聊一聊全球加速的原理和配置

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 上次我们讲了一下阿里云全球加速的带宽包选择,这次我们接着聊一下全球加速的基本原理和配置流程。

上次我们讲了一下阿里云全球加速的带宽包选择,这次我们接着聊一下全球加速的基本原理和配置流程。

阿里云全球加速GA的组件及工作原理如下所示:
全球加速.png

  • 加速区域、要优化访问体验的区域,目前覆盖全球的阿里云数据中心大部分可以作为加速区域使用,一个全球加速实例支持多个加速区域,不同的加速区域可以根据需要分配不同的加速带宽。
  • 加速IP、选择了加速地域后,将自动在该地域创建一个加速IP作为服务的访问入口。
  • 监听、将前端加速IP收到的请求转发到后端的应用服务,转发的过程中可以利用阿里云覆盖全球的内部传输网络进行加速,可以创建TCP/UDP或者HTTP/HTTPS的监听。
  • 终端组、一个靠近服务或网站所在地的代理集群,用于发送服务请求并获取服务响应,对于TCP/UDP监听来说一个监听只能对应一个终端组,对于HTTP/HTTPS的监听来说可以对应一个默认终端组以及多个虚拟终端组。
  • 终端节点、一个代理服务器节点,用于发送服务请求及传回结果。
  • 来自加速区域的服务请求将被分别发送到不同的加速区域的加速IP,加速IP具体接受什么样的请求要以监听为准,一个GA全球加速实例可以创建多个监听,而一个监听又对应多个不同的服务端口,这些端口限定了一个GA提供的服务范围,通过监听接受到的服务请求将通过阿里云的内部网络传输到不同的终端组,这些终端组的位置将尽可能靠近网站和服务的源站点,为了充分保证加速的性能和可用性,因此一个终端组将对应4个终端节点,这4个终端节点将负责将收到的加速请求转发给源站,待源站处理完成后结果将顺原路返回到加速IP,加速IP将把结果发送给在加速地域的客户端。
  • 对于TCP/UDP协议的全球加速监听,监听和终端组是一一对应的关系。
  • 对于HTTP/HTTPS协议的全球加速监听,默认情况下所有的加速请求将被发送到默认终端组,另外还可以通过设置基于URL的转发策略将部分请求转发到虚拟端口组。
  • 用户可根据需要将带宽包在不同的加速区域间进行分配,例如为北美的用户分配10Mbps,而为欧洲的用户分配6Mbps。

在掌握了全球加速的运作机制后再进行配置就是一件相当简单的事情了:

  1. 创建加速区域,并分配带宽,例如选择美国硅谷,分配10Mbps带宽,随后阿里云将在美国硅谷创建一个加速IP。
  2. 创建监听、例如TCP,80.
  3. 创建终端组、对应的阿里云将要求选择一个地域用来创建终端组,我们这里选择北京,输入源站的IP或域名。
  4. 配置审核确认,最终确认所有配置后阿里云开始生成终端组对应的终端节点,并为终端节点分配“下车IP”。目前阿里云为每一个终端组配置4个下车IP。

总而言之,GA全球加速的配置与另一个阿里云的服务SLB非常类似,可以视作一个在全球拥有多个IP地址的SLB,其中GA监听的概念和SLB的监听也非常类似,都是用来限定服务端口集合的,而为了实现就近的“下车”访问,GA有额外的终端组的概念,且终端组应尽可能的靠近源站。加速IP和终端组之间的网络是阿里巴巴高速的全球内部网络,因此使用GA进行全球加速可以避免绕行缓慢的国际线路以优化用户体验。

目录
相关文章
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
Web App开发 关系型数据库 测试技术
MyEclipse 2014GA 新建 Web Project 并配置 SSH
基本软件配置:     1)MyEclipse 2014GA(JDK:内置 1.7.0.u45;SSH:内置 Struts2.1、Spring3.1 和 Hibernate4.1) 2)apache-tomcat-8.
1104 0
|
2月前
|
算法 安全 定位技术
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
【创新未发表】【无人机路径巡检】三维地图路径规划无人机路径巡检GWO孙发、IGWO、GA、PSO、NRBO五种智能算法对比版灰狼算法遗传研究(Matlab代码实现)
188 40
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
6月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
2月前
|
机器学习/深度学习 边缘计算 并行计算
【无人机三维路径规划】基于遗传算法GA结合粒子群算法PSO无人机复杂环境避障三维路径规划(含GA和PSO对比)研究(Matlab代码代码实现)
【无人机三维路径规划】基于遗传算法GA结合粒子群算法PSO无人机复杂环境避障三维路径规划(含GA和PSO对比)研究(Matlab代码代码实现)
170 2
|
2月前
|
传感器 算法 Serverless
【无人机协同】基于遗传算法GA的同构异构无人机UAV协同搜索研究(Matlab代码实现)
【无人机协同】基于遗传算法GA的同构异构无人机UAV协同搜索研究(Matlab代码实现)
|
6月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
3月前
|
机器学习/深度学习 数据采集 算法
【遗传算法(GA)和模拟退火(SA)对翼型升阻比进行优化】基于神经网络和无导数算法的翼型优化(Matlab代码实现)
【遗传算法(GA)和模拟退火(SA)对翼型升阻比进行优化】基于神经网络和无导数算法的翼型优化(Matlab代码实现)
|
3月前
|
机器学习/深度学习 算法 安全
【无人机协同】基于APSO PSO CS-PSO MP_PSO A-PSO GA多种算法实现无人机路径协同规划研究(Matlab代码复现)
【无人机协同】基于APSO PSO CS-PSO MP_PSO A-PSO GA多种算法实现无人机路径协同规划研究(Matlab代码复现)
109 0

热门文章

最新文章