数据湖构建

首页 标签 数据湖构建
# 数据湖构建 #
关注
57内容
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
百草味基于“ EMR+Databricks+DLF ”构建云上数据湖的最佳实践
本文介绍了百草味大数据平台从 IDC 自建 Hadoop 到阿里云数据湖架构的迁移方案和落地过程。重点从 IDC 自建集群的痛点分析,云上大数据方案的选型以及核心模块的建设过程几个方面做了详细的介绍,希望给想了解和实践数据湖架构的企业和朋友一个参考。
数据湖构建服务搭配Delta Lake玩转CDC实时入湖
Change Data Capture(CDC)用来跟踪捕获数据源的数据变化,并将这些变化同步到目标存储(如数据湖或数据仓库),用于数据备份或后续分析,同步过程可以是分钟/小时/天等粒度,也可以是实时同步。CDC方案分为侵入式(intrusive manner)和非倾入性(non-intrusive manner)两种。
数禾云上数据湖最佳实践
数禾科技从成立伊始就组建了大数据团队并搭建了大数据平台。并在ECS上搭建了自己的Cloudera Hadoop集群。但随着公司互联网金融业务的快速扩张发展,大数据团队承担的责任也越来越重,实时数仓需求,日志分析需求,即席查询需求,数据分析需求等,每个业务提出的需求都极大的考验这个Cloudera Hadoop集群的能力。为了减轻Cloudera集群的压力,我们结合自身业务情况,在阿里云上落地一个适合数禾当前现实状况的数据湖。
免费试用