微店API使用指南:高效获取商品列表数据
本文介绍如何使用Python爬虫调用微店item_search接口,根据关键词搜索商品并获取商品列表数据,涵盖请求方式、JSON数据解析、分页参数设置及筛选排序功能,适用于电商数据分析与竞品研究。
订单评价内容采集接口技术解析
本文介绍电商系统中订单评价采集接口的设计与实现,涵盖核心功能、RESTful接口设计、Python代码示例及数据处理公式。结合安全性、性能优化与最佳实践,助力开发者构建高效、可靠的评价数据采集系统。
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
精通RAG:从“能用”到“好用”的进阶优化与评估之道
你的RAG应用是否总是答非所问,或者检索到的内容质量不高?本文聚焦于RAG系统的进阶优化,深入探讨从查询转换、多路召回与重排序(Rerank)等高级检索策略,到知识库构建的最佳实践。更重要的是,我们将引入强大的`Ragas`评估框架,教你如何用数据驱动的方式,科学地量化和提升你的RAG系统性能。
拔俗AI家庭医生助手服务系统:24小时守护全家健康的智能管家
在“互联网+医疗健康”背景下,针对基层医疗供需矛盾,本文基于阿里云AI与大数据技术,构建AI家庭医生助手系统,涵盖“云-边-端”协同架构、多模态数据采集、医疗大模型推理、实时预警与数据互通方案,并落地社区医疗实践,提升服务效率与健康管理水平,助力数字化转型。(238字)
拔俗AI一体化教学平台:让教、学、评真正“一键打通”
在教育信息化2.0背景下,针对数据孤岛、个性化不足等痛点,本文基于阿里云AI与大数据技术,构建“三横三纵”云原生架构的AI一体化教学平台,实现教、学、管全流程智能化。通过多模态数据采集、教育数据湖治理、大模型驱动的智能引擎及多角色应用协同,打通系统壁垒,提升教学效率与个性化水平,并已在省级重点中学成功落地,显著提效增质。
拔俗AI信息化系统开发:开发者必须啃下的三块技术硬骨头
企业数字化转型中,AI系统成刚需。开发者需攻克三大难关:精准拆解模糊需求,确保业务与技术对齐;严控数据质量,构建持续迭代的数据闭环;实现模型在产线的高效、稳定落地。技术与场景深度融合,方能跨越从“能用”到“好用”的鸿沟。(238字)