LeetCode 动态规划之摆动序列

简介: LeetCode 动态规划之摆动序列

题目


如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。


例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。


相反,[1, 4, 7, 2, 5][1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。 子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。


给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

 

示例 1:


输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。


示例 2:


输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。


示例 3:


输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2


提示:


1 <= nums.length <= 1000
0 <= nums[i] <= 1000


题解


解题分析


解题思路


  1. 本题是一个典型的动态规划问题;


  1. 每当我们选择一个元素作为摆动序列的一部分时,这个元素要么是上升的,要么是下降的,这取决于前一个元素的大小。那么列出状态表达式为:


  • up[i] 表示以前 i 个元素中的某一个为结尾的最长的「上升摆动序列」的长度。


  • down[i] 表示以前 i 个元素中的某一个为结尾的最长的「下降摆动序列」的长度。


如果 up[i] 有三种情况,


  • nums[i] > nums[i-1]


up[i] = fmax(up[i-1], down[i-1] + 1);
down[i] = down[i-1];


  • nums[i] < nums[i-1]


up[i] = up[i-1];
down[i] = fmax(up[i-1] + 1, down[i-1]);


  1. 最后得到结果 up[numsSize -1], down[numsSize -1]


复杂度


时间复杂度: O(N)


空间复杂度: O(N)


解题代码


题解代码如下(代码中有详细的注释说明):


int wiggleMaxLength(int* nums, int numsSize){
    if (numsSize < 2) {
        return numsSize;
    }
    int up[numsSize], down[numsSize];
up[0]= down[0] =1;
    for (int i=1; i< numsSize; i++) {
        if (nums[i] > nums[i-1]) {
            up[i] = fmax(up[i-1], down[i-1] + 1);
            down[i] = down[i-1];
        } else if (nums[i] < nums[i-1]) {
            up[i] = up[i-1];
            down[i] = fmax(up[i-1] + 1, down[i-1]);
        } else {
            up[i] = up[i-1];
            down[i] = down[i-1];
        }
    }
    return fmax(up[numsSize -1], down[numsSize -1]);
}


提交后反馈结果(由于该题目没有进行优化,性能一般):


image.png


参考信息




相关文章
|
Python
【Leetcode刷题Python】376. 摆动序列
文章提供了解决LeetCode "摆动序列" 问题的Python实现代码,通过遍历整数数组并使用两个变量 down 和 up 来记录正差和负差摆动序列的长度,最终返回最长摆动子序列的长度。
123 0
|
1月前
|
存储 C++ 索引
最长连续序列(每天刷力扣hot100系列)
本题使用哈希表法求最长连续序列。利用unordered_set存储去重元素,遍历集合时仅当num-1不存在时才作为起点向后扩展,统计连续长度,时间复杂度O(n),空间复杂度O(n)。相比unordered_map更高效,因无需存储值。
|
5月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
175 1
|
7月前
|
机器学习/深度学习 算法 Go
【LeetCode 热题100】139:单词拆分(动态规划全解析+细节陷阱)(Go语言版)
本题是 LeetCode 热题 139:单词拆分(Word Break),需判断字符串 `s` 是否能由字典 `wordDict` 中的单词拼接而成。通过动态规划(DP)或记忆化搜索解决。DP 中定义布尔数组 `dp[i]` 表示前 `i` 个字符是否可拆分,状态转移方程为:若存在 `j` 使 `dp[j]=true` 且 `s[j:i]` 在字典中,则 `dp[i]=true`。初始条件 `dp[0]=true`。代码实现中用哈希集合优化查找效率。记忆化搜索则从起始位置递归尝试所有切割点。两种方法各有利弊,DP 更适合面试场景。思考扩展包括输出所有拆分方式及使用 Trie 优化大字典查找。
216 6
|
Python
【Leetcode刷题Python】946. 验证栈序列
LeetCode题目“946. 验证栈序列”的Python解决方案,通过模拟栈的压入和弹出操作来验证给定的两个序列是否能通过合法的栈操作得到。
155 6
|
算法 Python
【Leetcode刷题Python】剑指 Offer 33. 二叉搜索树的后序遍历序列
本文提供了一种Python算法,用以判断给定整数数组是否为某二叉搜索树的后序遍历结果,通过识别根节点并递归验证左右子树的值是否满足二叉搜索树的性质。
103 3
|
Python
【Leetcode刷题Python】105. 从前序与中序遍历序列构造二叉树
LeetCode上105号问题"从前序与中序遍历序列构造二叉树"的Python实现,通过递归方法根据前序和中序遍历序列重建二叉树。
137 3
|
算法 Python
【Leetcode刷题Python】300. 最长递增子序列
LeetCode 300题 "最长递增子序列" 的两种Python解决方案:一种使用动态规划,另一种使用贪心算法结合二分查找。
126 1
|
算法 Java
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零
145 0
|
Python
【Leetcode刷题Python】674. 最长连续递增序列
LeetCode 674题 "最长连续递增序列" 的Python解决方案,使用动态规划算法找出给定整数数组中最长连续递增子序列的长度。
198 0