LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零

简介: LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零

LeetCode初级算法题:子数组最大平均数+二叉树的最小深度+最长连续递增序列+柠檬水找零java多种解法


1 子数组最大平均数

题目描述

给一个整数数组,找出平均数最大且长度为 k 的下标连续的子数组,并输出该最大平均数。

滑动窗口

6 2 7 5 8 4 3 1

6 2 7 5 8 4 3 1

窗口移动时,窗口内的和等于sum加上新加进来的值,减去出去的值

解题思路与代码

    public double findMaxAverage(int[] nums, int k) {
        int sum = 0;
        int n = nums.length;
        for (int i = 0; i < k; i++) {
            sum += nums[i];
        }
        int maxSum = sum;
        for (int i = k; i < n; i++) {
            sum = sum - nums[i - k] + nums[i];
            maxSum = Math.max(maxSum, sum);
        }
        return 1.0 * maxSum / k;
    }

2 二叉树的最小深度

题目描述

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

解题思路与代码

解法一:深度优先

遍历整颗数,找到每一个叶子节点,从叶子节点往上开始计算,左右子节点都为空则记录深度为1

左右子节点只有一边,深度记录为子节点深度+1

左右两边都有子节点,则记录左右子节点的深度较小值+1

 public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        if (root.left == null && root.right == null) {
            return 1;
        }
        int min_depth = Integer.MAX_VALUE;
        if (root.left != null) {
            min_depth = Math.min(minDepth(root.left), min_depth);
        }
        if (root.right != null) {
            min_depth = Math.min(minDepth(root.right), min_depth);
        }
        return min_depth + 1;
    } 
  • 时间复杂度:O(N)
  • 空间复杂度:O(logN) 取决于树的高度

解法二:广度优先

从上往下,找到一个节点时,标记这个节点的深度。查看该节点是否为叶子节点,如果是直接返回深度

如果不是叶子节点,将其子节点标记深度(在父节点深度的基础上加1)

    class QueueNode {
        TreeNode node;
        int depth;
        public QueueNode(TreeNode node, int depth) {
            this.node = node;
            this.depth = depth;
        }
    }
    public int minDepth(TreeNode root) {
        if (root == null) {
            return 0;
        }
        Queue<QueueNode> queue = new LinkedList<QueueNode>();
        queue.offer(new QueueNode(root, 1));
        while (!queue.isEmpty()) {
            QueueNode nodeDepth = queue.poll();
            TreeNode node = nodeDepth.node;
            int depth = nodeDepth.depth;
            if (node.left == null && node.right == null) {
                return depth;
            }
            if (node.left != null) {
                queue.offer(new QueueNode(node.left, depth + 1));
            }
            if (node.right != null) {
                queue.offer(new QueueNode(node.right, depth + 1));
            }
            
        }
        return 0;
    }
  • 时间复杂度:O(N)
  • 空间复杂度:O(N)

3 最长连续递增序列

题目描述

给定一个未经排序的整数数组,找到最长且连续递增的子序列,并返回该序列的长度。

序列的下标是连续的

解题思路与代码

贪心算法

从0开始寻找递增序列,并将长度记录,记录递增序列的最后一个下标,然后从该下标继续寻找,记录

长度,取长度最大的即可

    public static int findLength(int[] nums) {
        int ans = 0;
        int start = 0;
        for (int i = 0; i < nums.length; i++) {
            if (i > 0 && nums[i] <= nums[i - 1]) {
                start = i;
            }
            ans = Math.max(ans, i - start + 1);
        }
        return ans;
    }


4 柠檬水找零

题目描述

在柠檬水摊上,每一杯柠檬水的售价为 5 美元。

顾客排队购买你的产品,一次购买一杯。

每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。必须给每个顾客正确找零。

注意,一开始你手头没有任何零钱。

如果你能给每位顾客正确找零,返回 true ,否则返回 false 。

示例

输入:[5,5,5,10,20]

输出:true

输入:[10,10]

输出:false

解题思路与代码

贪心算法

    public boolean lemonadeChange(int[] bills) {
        int five = 0, ten = 0;
        for (int bill : bills) {
            if (bill == 5) {
                five++;
            } else if (bill == 10) {
                if (five == 0) {
                    return false;
                }
                five--;
                ten++;
            } else {
                if (five > 0 && ten > 0) {
                    five--;
                    ten--;
                } else if (five >= 3) {
                    five -= 3;
                } else {
                    return false;
                }
            }
        }
        return true;
    }

目录
相关文章
|
1月前
|
存储 C++ 索引
最长连续序列(每天刷力扣hot100系列)
本题使用哈希表法求最长连续序列。利用unordered_set存储去重元素,遍历集合时仅当num-1不存在时才作为起点向后扩展,统计连续长度,时间复杂度O(n),空间复杂度O(n)。相比unordered_map更高效,因无需存储值。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的XGBoost序列预测算法matlab仿真
基于WOA优化XGBoost的序列预测算法,利用鲸鱼优化算法自动寻优超参数,提升预测精度。结合MATLAB实现,适用于金融、气象等领域,具有较强非线性拟合能力,实验结果表明该方法显著优于传统模型。(238字)
|
26天前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
5月前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
5月前
|
算法 数据安全/隐私保护
基于混沌序列和小波变换层次化编码的遥感图像加密算法matlab仿真
本项目实现了一种基于小波变换层次化编码的遥感图像加密算法,并通过MATLAB2022A进行仿真测试。算法对遥感图像进行小波变换后,利用Logistic混沌映射分别对LL、LH、HL和HH子带加密,完成图像的置乱与扩散处理。核心程序展示了图像灰度化、加密及直方图分析过程,最终验证加密图像的相关性、熵和解密后图像质量等性能指标。通过实验结果(附图展示),证明了该算法在图像安全性与可恢复性方面的有效性。
|
5月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
194 1
|
5月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。

热门文章

最新文章