Pandas数据结构:Series与DataFrame

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
应用实时监控服务-应用监控,每月50GB免费额度
函数计算FC,每月15万CU 3个月
简介: 本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。

引言

在数据分析领域,Python 的 Pandas 库因其强大的数据操作功能而广受欢迎。Pandas 提供了两种主要的数据结构:SeriesDataFrame。本文将从基础概念出发,逐步深入探讨这两种数据结构的使用方法、常见问题及解决方案。
image.png

1. 基础概念

1.1 Series

Series 是一维数组,可以存储任何数据类型(整数、字符串、浮点数、Python 对象等)。Series 的索引默认是从 0 开始的整数索引,也可以自定义索引。

import pandas as pd

# 创建一个简单的 Series
data = [10, 20, 30, 40]
s = pd.Series(data)
print(s)

输出:

0    10
1    20
2    30
3    40
dtype: int64

1.2 DataFrame

DataFrame 是二维表格型数据结构,可以看作是由多个 Series 组成的。每个列可以有不同的数据类型。DataFrame 的索引可以是自定义的,也可以是默认的整数索引。

# 创建一个简单的 DataFrame
data = {
   
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)
print(df)

输出:

      Name  Age         City
0    Alice   25     New York
1      Bob   30  Los Angeles
2  Charlie   35      Chicago

2. 常见问题及解决方案

2.1 数据缺失

问题描述

在实际数据中,经常会遇到缺失值(NaN)。处理缺失值是数据分析中的一个重要步骤。

解决方案

  • 删除缺失值:使用 dropna() 方法删除包含缺失值的行或列。
  • 填充缺失值:使用 fillna() 方法填充缺失值。
# 删除缺失值
df.dropna(inplace=True)

# 填充缺失值
df.fillna(value=0, inplace=True)

2.2 数据类型转换

问题描述

有时需要将某一列的数据类型从一种类型转换为另一种类型,例如从字符串转换为整数。

解决方案

使用 astype() 方法进行数据类型转换。

# 将 'Age' 列从字符串转换为整数
df['Age'] = df['Age'].astype(int)

2.3 重复数据

问题描述

数据集中可能存在重复的记录,这会影响分析结果的准确性。

解决方案

使用 drop_duplicates() 方法删除重复的行。

# 删除重复的行
df.drop_duplicates(inplace=True)

2.4 数据筛选

问题描述

在分析数据时,经常需要根据某些条件筛选数据。

解决方案

使用布尔索引进行数据筛选。

# 筛选出年龄大于 30 的记录
filtered_df = df[df['Age'] > 30]
print(filtered_df)

2.5 数据排序

问题描述

对数据进行排序可以帮助我们更好地理解数据的分布情况。

解决方案

使用 sort_values() 方法对数据进行排序。

# 按 'Age' 列升序排序
sorted_df = df.sort_values(by='Age')
print(sorted_df)

2.6 数据聚合

问题描述

在数据分析中,经常需要对数据进行聚合操作,例如计算平均值、求和等。

解决方案

使用 groupby() 方法进行数据聚合。

# 按 'City' 列分组,并计算每组的平均年龄
grouped_df = df.groupby('City')['Age'].mean()
print(grouped_df)

2.7 数据合并

问题描述

在实际应用中,数据往往来自不同的源,需要将这些数据合并在一起进行分析。

解决方案

使用 merge() 方法进行数据合并。

# 创建两个 DataFrame
df1 = pd.DataFrame({
   
    'Name': ['Alice', 'Bob'],
    'Age': [25, 30]
})

df2 = pd.DataFrame({
   
    'Name': ['Alice', 'Bob'],
    'City': ['New York', 'Los Angeles']
})

# 合并两个 DataFrame
merged_df = pd.merge(df1, df2, on='Name')
print(merged_df)

3. 常见报错及解决方法

3.1 KeyError

报错描述

当尝试访问不存在的列时,会引发 KeyError

解决方法

确保列名正确无误。

# 错误示例
df['NonExistentColumn']

# 正确示例
df['Age']

3.2 ValueError

报错描述

当数据类型不匹配时,会引发 ValueError

解决方法

检查数据类型是否一致,必要时进行数据类型转换。

# 错误示例
df['Age'] = df['Age'] + 'years'

# 正确示例
df['Age'] = df['Age'].astype(str) + ' years'

3.3 SettingWithCopyWarning

报错描述

当对一个切片进行赋值操作时,可能会引发 SettingWithCopyWarning

解决方法

使用 .loc.iloc 进行赋值操作。

# 错误示例
subset = df[df['Age'] > 30]
subset['City'] = 'Unknown'

# 正确示例
df.loc[df['Age'] > 30, 'City'] = 'Unknown'

4. 总结

本文介绍了 Pandas 中的两种主要数据结构 SeriesDataFrame,并通过具体代码案例详细讲解了常见的问题及其解决方案。希望本文能帮助读者更好地理解和使用 Pandas 进行数据分析。

目录
相关文章
|
30天前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
150 0
|
30天前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
255 0
|
11月前
|
存储 数据挖掘 数据处理
掌握Pandas核心数据结构:Series与DataFrame的四种创建方式
本文介绍了 Pandas 库中核心数据结构 Series 和 DataFrame 的四种创建方法,包括从列表、字典、标量和 NumPy 数组创建 Series,以及从字典、列表的列表、NumPy 数组和 Series 字典创建 DataFrame,通过示例详细说明了每种创建方式的具体应用。
783 67
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
266 0
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
302 1
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
332 0
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
251 2
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
329 3
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
164 1
|
机器学习/深度学习 数据采集 监控
Pandas与Matplotlib:Python中的动态数据可视化
Pandas与Matplotlib:Python中的动态数据可视化