【赵渝强老师】基于大数据组件的平台架构

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。

1.png

在了解了大数据各个生态圈所包含的组件及其功能特性后,就可以利用这些组件来搭建一个大数据平台从而实现数据的存储和数据的计算。下图展示了大数据平台的整体架构。


大数据平台的Lambda架构视频讲解如下:


大数据平台的Kappa架构视频讲解如下:


大数据平台的总体架构可以分为五层,分别是:数据源层、数据采集层、大数据平台层、数据仓库层和应用层


一、数据源层

数据源层的主要功能是负责提供各种需要的业务数据,例如:用户订单是数据、交易数据、系统的日志数据等等,总之把能够提供的数据都可以称之为数据源。尽管数据源的种类多种多样,在大数据平台体系中可以把它们划分成两大类,即:离线数据源和实时数据源。顾名思义,离线数据源用于大数据离线计算中;而实时数据源用于大数据实时计算中。


二、数据采集层

有了底层数据源的数据,就需要使用ETL工具完成数据的采集、转换和加载。在Hadoop体系中就提供了这样的组件。例如可以使用Sqoop完成大数据平台与关系型数据库的数据交换;使用Flume完成对日志数据的采集。除了大数据平台体系本身提供的这些组件外,爬虫也是一个典型的数据采集方式。当然也可以使用第三方的数据采集工具,例如:DataX和CDC完成数据的采集工作。


为了解决数据源层和数据采集层之间的耦合度,可以在这两层之间加入数据总线。数据总线并不是必须的,它的引入只是为了在进行系统架构设计的时候,降低层与层之间的耦合。


三、大数据平台层

这是整个大数据体系中最核心的一层用于完成大数据的存储和大数据的计算。由于大数据平台可以看成数据仓库的一种实现方式,进而又可以分为离线数据仓库和实时数据仓库。下面分别进行介绍。


  • 基于大数据技术的离线数据仓库实现方式

底层的数据采集层得到数据后,通常可以存储在HDFS或者HBase中。然后由离线计算引擎,如:MapReduce、Spark Core、Flink DataSet完成离线数据的分析与处理。为了能够在平台上对各种计算引擎进行统一的管理和调度,可以把这些计算引擎都运行在Yarn之上;接下来就可以使用Java程序或者Scala程序来完成数据的分析与处理。为了简化应用的开发,在大数据平台体系中,也支持使用SQL语句的方式来处理数据,即:提供了各种数据分析引擎,例如:Hadoop体系中的Hive,其默认的行为是Hive on MapReduce。这样就可以在Hive中书写标准的SQL,从而由Hive的引擎将其转换成MapReduce,进而运行在Yarn之上来处理大数据。常见的大数据分析引擎除了Hive,还有Spark SQL和Flink SQL。


  • 基于大数据技术的实时数据仓库实现方式

底层的数据采集层得到实时数据后,为了进行数据的持久化同时保证数据的可靠性,可以将其采集的数据存入消息系统Kafka;进而由各种实时计算引擎,如:Storm、Spark Stream和Flink DataStream进行处理。与离线数据仓库一样,可以把这些计算引擎运行在Yarn之上,同时支持SQL语句的方式对实时数据进行处理。


离线数据仓库和实时数据仓库在实现的过程中,可能会用到一些公共的组件,例如:使用MySQL存储的元信息、使用Redis进行缓存,包括使用ElasticSearch(简称ES)完成数据的搜索等等。


四、数据仓库层

   

有了大数据平台层的支持就可以进一步地搭建数据仓库层了。而在搭建数据仓库模型的时候,又可以基于星型模型或者雪花模型进行搭建。前面曾经提到的数据集市和机器学习的算法也可以划归到这一层中。


五、应用层

   

有了数据仓库层的各种数据模型和数据后,就可以基于这些模型和数据去实现各种各样的应用场景了。例如:电商中的热门商品分析、图计算中的社交网络分析、推荐系统的实现、风险控制,以及行为预测等等。




相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
16天前
|
数据可视化 关系型数据库 MySQL
基于python大数据的的海洋气象数据可视化平台
针对海洋气象数据量大、维度多的挑战,设计基于ECharts的可视化平台,结合Python、Django与MySQL,实现数据高效展示与交互分析,提升科研与决策效率。
|
3月前
|
消息中间件 Java Kafka
Java 事件驱动架构设计实战与 Kafka 生态系统组件实操全流程指南
本指南详解Java事件驱动架构与Kafka生态实操,涵盖环境搭建、事件模型定义、生产者与消费者实现、事件测试及高级特性,助你快速构建高可扩展分布式系统。
209 7
|
4月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
199 0
|
4月前
|
数据采集 人工智能 大数据
10倍处理效率提升!阿里云大数据AI平台发布智能驾驶数据预处理解决方案
阿里云大数据AI平台推出智能驾驶数据预处理解决方案,助力车企构建高效稳定的数据处理流程。相比自建方案,数据包处理效率提升10倍以上,推理任务提速超1倍,产能翻番,显著提高自动驾驶模型产出效率。该方案已服务80%以上中国车企,支持多模态数据处理与百万级任务调度,全面赋能智驾技术落地。
354 0
|
17天前
|
数据采集 缓存 大数据
【赵渝强老师】大数据日志采集引擎Flume
Apache Flume 是一个分布式、可靠的数据采集系统,支持从多种数据源收集日志信息,并传输至指定目的地。其核心架构由Source、Channel、Sink三组件构成,通过Event封装数据,保障高效与可靠传输。
110 1
|
1月前
|
存储 NoSQL 前端开发
【赵渝强老师】MongoDB的分布式存储架构
MongoDB分片通过将数据分布到多台服务器,实现海量数据的高效存储与读写。其架构包含路由、配置服务器和分片服务器,支持水平扩展,结合复制集保障高可用性,适用于大规模生产环境。
204 1
|
24天前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
200 1
|
4月前
|
分布式计算 关系型数据库 MySQL
【赵渝强老师】大数据交换引擎Sqoop
Sqoop是一款开源工具,用于在Hadoop与传统数据库如Oracle、MySQL之间传输数据。它基于MapReduce实现,支持数据导入导出、生成Java类及Hive表结构等操作,适用于大数据处理场景。
129 3
【赵渝强老师】大数据交换引擎Sqoop
|
3月前
|
SQL 存储 监控
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。

热门文章

最新文章

相关产品

  • 云原生大数据计算服务 MaxCompute