NumPy 正态分布与 Seaborn 可视化指南

本文涉及的产品
应用实时监控服务-应用监控,每月50GB免费额度
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 正态分布(高斯分布)是重要的概率模型,具有钟形曲线特征,由均值μ和标准差σ描述。NumPy的`random.normal()`可生成正态分布随机数,Seaborn库方便绘制分布图。正态分布广泛应用于统计学、机器学习、金融和工程等领域。练习包括生成正态分布数据、比较不同标准差影响及模拟考试成绩计算平均分和标准分。

正态分布(高斯分布)

简介

正态分布(也称为高斯分布)是一种非常重要的概率分布,它描述了许多自然和人为现象的数据分布情况。正态分布的形状呈钟形,其峰值位于平均值处,两侧对称下降。

特征

正态分布可以用两个参数来完全描述:

均值(μ):表示数据的平均值,分布的峰值位于 μ 处。
标准差(σ):表示数据的离散程度,数值越大,分布越平坦。

生成正态分布数据

NumPy 提供了 random.normal() 函数来生成服从正态分布的随机数。该函数接受以下参数:

loc:正态分布的均值,默认为 0。
scale:正态分布的标准差,默认为 1。
size:输出数组的形状。

示例:生成 100 个服从正态分布的随机数,均值为 5,标准差为 2:

import numpy as np

data = np.random.normal(loc=5, scale=2, size=100)
print(data)

可视化正态分布

Seaborn 库提供了便捷的函数来可视化分布,包括正态分布。

示例:绘制服从正态分布的数据的分布图:

import seaborn as sns
import numpy as np

data = np.random.normal(size=1000)

sns.distplot(data)
plt.show()

应用

正态分布在许多领域都有应用,例如:

统计学:用于推断总体参数,进行假设检验等。
机器学习:用于数据预处理,特征工程等。
金融:用于建模股票价格、汇率等金融数据。
工程:用于控制质量、可靠性分析等。

练习

  1. 生成 500 个服从正态分布的随机数,均值为 10,标准差为 3,并绘制它们的分布图。
  2. 比较不同标准差下正态分布形状的变化。
  3. 利用正态分布来模拟一次考试成绩,并计算平均分和标准分。

解决方案

import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

# 1. 生成服从正态分布的随机数并绘制分布图
data = np.random.normal(loc=10, scale=3, size=500)
sns.distplot(data)
plt.show()

# 2. 比较不同标准差下正态分布形状的变化
sns.distplot(np.random.normal(size=1000, scale=1), label="σ=1")
sns.distplot(np.random.normal(size=1000, scale=2), label="σ=2")
sns.distplot(np.random.normal(size=1000, scale=3), label="σ=3")
plt.legend()
plt.show()

# 3. 模拟考试成绩并计算平均分和标准分
scores = np.random.normal(loc=80, scale=10, size=100)
print("平均分:", scores.mean())
print("标准分:", (scores - scores.mean()) / scores.std())

解释:

在第一个练习中,我们生成了 500 个服从正态分布的随机数,均值为 10,标准差为 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。
在第二个练习中,我们生成了三个服从正态分布的数据集,分别设置标准差为 1、2 和 3,并使用 Seaborn 的 distplot() 函数绘制了它们的分布图。我们可以观察到,随着标准差的增加,分布变得更加平坦,两侧的尾巴更加明显。
在第三个练习中,我们模拟了一次考试成绩,假设成绩服从正态分布,均值为 80,标准差为 10。然后,我们计算了考试成绩的平均分和标准分。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

相关文章
|
机器学习/深度学习 数据可视化 搜索推荐
Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。
【7月更文挑战第5天】Python在社交媒体分析中扮演关键角色,借助Pandas、NumPy、Matplotlib等工具处理、可视化数据及进行机器学习。流程包括数据获取、预处理、探索、模型选择、评估与优化,以及结果可视化。示例展示了用户行为、话题趋势和用户画像分析。Python的丰富生态使得社交媒体洞察变得高效。通过学习和实践,可以提升社交媒体分析能力。
276 1
|
机器学习/深度学习 数据可视化 Python
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率,常用于随机数生成。其概率密度函数为 1/(b-a),其中 a 和 b 分别是下限和上限。NumPy 的 `random.uniform()` 可生成均匀分布的随机数。逻辑分布,或 Logistic 分布,常用于 S 形增长现象的建模和机器学习,如逻辑回归。它有两个参数:位置参数 loc 和尺度参数 scale。其概率密度函数涉及 1 + (x-loc)/scale 的倒数平方。
194 1
|
BI 测试技术 索引
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-1
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
|
机器学习/深度学习 数据采集 数据可视化
NumPy 正态分布与 Seaborn 可视化指南
该文档介绍了正态分布(高斯分布),包括它的简介、特征、生成正态分布数据的方法(使用 NumPy 的 `random.normal()` 函数)、如何用 Seaborn 可视化正态分布,以及正态分布的应用(如统计学、机器学习、金融和工程)。还提供了一些练习,如生成特定参数的正态分布随机数并绘图,以及比较不同标准差下的分布形状。最后,给出了练习的解决方案,展示了如何执行这些任务。
248 1
|
存储 API C语言
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)-2
Python学习笔记之NumPy模块——超详细(安装、数组创建、正态分布、索引和切片、数组的复制、维度修改、拼接、分割...)
|
机器学习/深度学习 数据可视化 Python
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为 `f(x) = 1/(b-a)`,其中 a 和 b 分别为下限和上限。NumPy 的 `random.uniform()` 可生成均匀分布的随机数。Seaborn 可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于 S 形增长现象的建模,其 PDF 为 `(scale / (π (1 + (x - loc) / scale)^2))`,由位置参数 loc 和尺度参数 scale 定义。
273 0
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
245 0
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
101 0
|
3月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
294 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
269 0