疾病关联网络构建及并发症预测模型

简介: 疾病关联网络构建及并发症预测模型

数据挖掘和分析的最核心也最重要的问题就是“预测”。广义的“预测”即包含预测事物未来走势,也包括预测事物之间隐藏的关联点击文末“阅读原文”了解更多


相关视频

image.png

例如在医疗健康领域,找到事物之间隐藏关联对于辅助诊断、知识发现等有重要的意义。

解决方案

任务/目标

从电子病历中提取患者的疾病信息,构建疾病关联网络,并据此进行并发症预测。

数据源准备

电子病历作为医疗信息的重要载体,有很大的挖掘空间和意义。同时,由于中文的多义性、表述不规范性,分析自然语言书写的电子病历也带来很大挑战。

根据提取数据要求的不同,可以采用不同方式处理中文文本。例如在这个工作中,采取中文分词、术语词典比对等方式,提取病历中关键信息。对于要求更高的数据,则可采取词向量、命名实体识别等方法提取数据特征。

 

数据清洗和初步统计

数据清洗的目的是去除无效数据、不完整数据、前后不一致数据等。

在病历数据特征提取中,去除患者隐私信息,保留基础信息,剔除无效诊断病历,剔除极罕见诊断数据(因其在病历中所占比例过小,无法进行学习和分析,存在过拟合可能)。

接下来,对数据进行初步统计形成数据概览。这一步的目的是为了加强对数据整体认识,确认数据质量,判断数据是否存在不合理的分布。

6901bfc3f468b82e2c8e897f9e1a7e5c.png

由于本项目旨在“知识发现”,因此所有数据均作为学习训练集,发现的“知识”采用发表文献验证的方式进行检验和验证。

 


点击标题查阅往期内容


R语言APRIORI关联规则、K-MEANS均值聚类分析中药专利复方治疗用药规律网络可视化


左右滑动查看更多

dda4be001ff3ada18b7e8053e045ad4b.png

关联网络 构造

挖掘特征之间的关联采用基于传统Apriori的FP-growth关联规则挖掘算法。对于挖掘出的规则,置信度和提升度是重要的评价值指标。根据置信度和提升度的分布情况,设定阈值,确定哪些特征之间可能存在较强关联。

在此基础上,构建疾病关联网络。

基于链路预测技术构建预测系统

针对复杂网络中关联分析和挖掘,可以采用链路预测技术对潜在事物之间关联进行预测分析。

链路预测旨在根据观察到的网络中的链接和节点的拓扑性质,预测任意两个节点之间存在链接的可能性

关联规则挖掘结果:

在关联规则挖掘中,共计生成1800多条规则,提升度区间为0.12-60.19,置信度区间为0.01-1。下表列举10个排名靠前的关联规则:

3b34ca8267adec5b1a5c1b29bb7ea87c.png

关联网络构建结果:

构建疾病关联网络,使用cytoscape绘制网络图:

a2aeb5e3df533d70a0a2f69930cc90e4.png

单纯由图即可发现,对于大多数疾病,与其强烈相关的疾病数量并不多,而放大部分疾病关联程度较高,表明这个区域的疾病往往伴随多种临床并发症。

 

链路预测结果

在关联网络中,采用链路预测技术预测潜在的“边”(即疾病之间的关联)。

08c40caaa10e88457cd6d4e02fdd0e2f.png

结果发现呼吸系统常见病往往伴有其他呼吸系统疾病和内分泌系统疾病:

链路预测部分结果见下表:

d814742b575016ed6b56b2f0f922c31f.png 新发现的知识(疾病关联)采用文献验证的方式进行检验,发现在很多人的研究中确有相关报道,说明了预测模型的有效性。

当然,预测结果还可以通过真实病历信息进行进一步评估和分析。例如,将训练数据进行一定比例分割划分训练集和测试集,在测试集中验证预测结果的准确性。

相关文章
|
2月前
|
前端开发 JavaScript 开发者
JavaScript:构建动态网络的引擎
JavaScript:构建动态网络的引擎
|
4月前
|
C++
基于Reactor模型的高性能网络库之地址篇
这段代码定义了一个 InetAddress 类,是 C++ 网络编程中用于封装 IPv4 地址和端口的常见做法。该类的主要作用是方便地表示和操作一个网络地址(IP + 端口)
234 58
|
4月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
93 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
4月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
125 2
|
4月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
140 1
|
4月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
150 2
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
2月前
|
人工智能 监控 数据可视化
如何破解AI推理延迟难题:构建敏捷多云算力网络
本文探讨了AI企业在突破算力瓶颈后,如何构建高效、稳定的网络架构以支撑AI产品化落地。文章分析了典型AI IT架构的四个层次——流量接入层、调度决策层、推理服务层和训练算力层,并深入解析了AI架构对网络提出的三大核心挑战:跨云互联、逻辑隔离与业务识别、网络可视化与QoS控制。最终提出了一站式网络解决方案,助力AI企业实现多云调度、业务融合承载与精细化流量管理,推动AI服务高效、稳定交付。

热门文章

最新文章