【虚警检测】基于CA-CFAR(单元平均恒虚警)、GO-CFAR(最大选择恒虚警)、SO-CFAR(最小选择恒虚警)算法的恒虚警检测附Matlab代码

简介: 【虚警检测】基于CA-CFAR(单元平均恒虚警)、GO-CFAR(最大选择恒虚警)、SO-CFAR(最小选择恒虚警)算法的恒虚警检测附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

虚警检测是一种在雷达系统中广泛应用的技术,用于识别并剔除由于噪声或其他干扰引起的虚警信号。在本文中,我们将介绍三种常用的恒虚警检测算法:CA-CFAR、GO-CFAR和SO-CFAR,并提供相应的Matlab代码。

CA-CFAR(Constant False Alarm Rate)算法是最常见的虚警检测算法之一。该算法通过计算邻域内的信号功率的平均值,然后与目标信号的功率进行比较,从而确定是否存在虚警信号。CA-CFAR算法的优点是简单易实现,但对于非均匀背景噪声的情况下可能存在一定的误报率。

GO-CFAR(Greatest of CFAR)算法是一种改进的虚警检测算法,它通过选择邻域内信号功率的最大值作为参考值,并与目标信号的功率进行比较。相比于CA-CFAR算法,GO-CFAR算法能够更好地适应非均匀背景噪声的情况,并减少误报率。

SO-CFAR(Smallest of CFAR)算法是另一种改进的虚警检测算法,它选择邻域内信号功率的最小值作为参考值,并与目标信号的功率进行比较。SO-CFAR算法在一些特定的应用场景中表现出色,但在存在强干扰的情况下可能会导致较高的误报率。

为了帮助读者更好地理解这些算法,我们提供了基于Matlab的代码示例。通过运行这些代码,读者可以自行实验并观察不同算法在不同情况下的表现。代码中包含了详细的注释,以帮助读者理解算法的实现细节。

总结起来,虚警检测是一项重要的技术,用于剔除雷达系统中的虚警信号。CA-CFAR、GO-CFAR和SO-CFAR是常用的恒虚警检测算法,每种算法都适用于不同的应用场景。通过本文提供的Matlab代码示例,读者可以更好地理解和应用这些算法。

⛄ 部分代码

function [ index, XT ] = cfar_ac( xc, N, pro_N, PAD)%   假设回波服从高斯分布%   alpha=N.*(PAD.^(-1./N)-1);index=1+N/2+pro_N/2:length(xc)-N/2-pro_N/2;XT=zeros(1,length(index));for i=index    cell_left=xc(1,i-N/2-pro_N/2:i-pro_N/2-1);    cell_right=xc(1,i+pro_N/2+1:i+N/2+pro_N/2);    Z=(sum(cell_left)+sum(cell_right))./N;        XT(1,i-N/2-pro_N/2)=Z.*alpha;endend

⛄ 运行结果

⛄ 参考文献

[1] 郝程鹏,侯朝焕,王维建.基于改进的VI-CFAR算法的分布式CFAR检测[J].系统仿真学报, 2007, 19(4):830-832.DOI:10.3969/j.issn.1004-731X.2007.04.034.

[2] 宋俊福.基于杂波图和变换域的恒虚警率处理[D].大连海事大学,2013.

[3] 周根祥.某些修正型单元平均恒虚警处理器在多目标环境下的性能分析[J].现代雷达, 1983(2):94-109.DOI:CNKI:SUN:XDLD.0.1983-02-010.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合


相关文章
|
18天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
101 8
|
18天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
|
18天前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
|
27天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
95 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
164 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
180 14

热门文章

最新文章