Elasticesearch内存详解(九)——内存排查

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 介绍Elasticesearch内存排查相关

1.介绍

如果您的集群目前遇到了性能问题,这很可能是因为一些常见的原因:


配置问题:分片过多,无 ILM 策略


量引起的:请求速度高、负载高,重叠昂贵的查询/写入重叠


2.分片过多问题


数据索引存储在sub-shards中,sub-shards利用堆进行维护,并搜索/写入请求。shard大小上限应为50GB,数量上限由以下的公式确定:


shards <= sum(nodes.max_heap) * 20


在上述的Elasticsearch Service示例中,两个区域之间有8GB的物理内存 (总共分配两个节点)。


# node.max_heap 
8GB of physical memory / 2 = 4GB of heap  
# sum(nodes.max_heap) 
4GB of heap * 2 nodes = 8GB 
# max shards 
8GB * 20 
160


然后将其与_cat/allocation进行交叉比较


GET /_cat/allocation?v=true&h=shards,node
shards node
    41 instance-0000000001
    41 instance-0000000000


或与cluster/health进行交叉比较


GET /_cluster/health?filter_path=status,*_shards
{
  "status": "green",
  "unassigned_shards": 0,
  "initializing_shards": 0,
  "active_primary_shards": 41,
  "relocating_shards": 0,
  "active_shards": 82,
  "delayed_unassigned_shards": 0
}


所以这个部署有82个分片, 最大推荐值为160。 如果计数高于建议值,您可能会在接下来的两部分中遇到如下情况(见下文)。


如果任何分片在active_shards或active_primary_shards之外的报告>0,则表明您已经找到了引发性能问题的主要配置原因。


最常见的情况是,如果报告了一个问题,则unassignd_shards >0。如果这些 shard 是主要分片,您的集群将报告“状态:红色”,如果只是副本,则报告为“状态:黄色”。(所以在索引上设置副本很重要,这样,在集群遇到问题时可以恢复,不会丢失数据。)


假设我们有一个“状态:黄色”和一个未指派的shard。为了进行调查,我们将利用_cat/shards来查看是哪个索引分片出现了问题。


GET _cat/shards?v=true&s=state
index                                     shard prirep state        docs   store ip           node
logs                                      0     p      STARTED         2  10.1kb 10.42.255.40 instance-0000000001
logs                                      0     r      UNASSIGNED
kibana_sample_data_logs                   0     p      STARTED     14074  10.6mb 10.42.255.40 instance-0000000001
.kibana_1                                 0     p      STARTED      2261   3.8mb 10.42.255.40 instance-0000000001


这将用于我们的非系统索引日志,它有一个未指派的副本分片。让我们运行 _cluster/allocation/explain来看看问题出在哪儿(专业提示:当您升级到支持时,这正是我们所做的事情)


GET _cluster/allocation/explain?pretty&filter_path=index,node_allocation_decisions.node_name,node_allocation_decisions.deciders.*
{ "index": "logs",
  "node_allocation_decisions": [{
      "node_name": "instance-0000000005",
      "deciders": [{
          "decider": "data_tier",
          "decision": "NO",
          "explanation": "node does not match any index setting [index.routing.allocation.include._tier] tier filters [data_hot]"
}]}]}


此错误消息指向data_hot,它是索引生命周期管理( ILM)策略的一部分,说明我们的ILM策略与当前的索引设置不一致。在本例中,此错误的原因是在没有指定hot-warm的情况下设置了hot-warm ILM策略。(我必须让一些东西出错,因为这是我在给你们演示错误示例。看看你们对我做了什么 😂)


仅供参考,如果没有unsigned shards情况下就运行此命令,将会出现一个400 错误:当前已没有未指派到节点的分片,因为没有任何错误报告。


如果您遇到非逻辑原因(例如,在分配期间节点离开集群之类的临时网络错误),您可以随时使用Elastic的 _cluster/reroute。


POST /_cluster/reroute


这一无需定制的请求将启动一个异步后台进程,尝试分配所有当前状态:NASSIGNED shards。别像我一样等到它完成后才联系开发人员,我当时以为这是瞬间的,而且可以很巧地为他们及时完成升级,然后告诉他们一切正常,因为什么都没有了。)


3.超过资源限制熔断器报错


最大化堆分配可能会引起对集群的请求超时或错误,而且,您的集群还会经常遇到熔断器异常这一问题。熔断会导致elasticsearch.log事件,例如:


Caused by: org.elasticsearch.common.breaker.CircuitBreakingException: [parent] Data too large, data for [<transport_request>] would be [num/numGB], which is larger than the limit of [num/numGB], usages [request=0/0b, fielddata=num/numKB, in_flight_requests=num/numGB, accounting=num/numGB]


要进行调查,请查看您的heap.percent,方法是查看 _cat/nodes。


GET /_cat/nodes?v=true&h=name,node*,heap*
# heap = JVM (logical memory reserved for heap)
# ram  = physical memory
name                                node.role heap.current heap.percent heap.max
tiebreaker-0000000002 mv             119.8mb           23    508mb
instance-0000000001   himrst           1.8gb           48    3.9gb
instance-0000000000   himrst           2.8gb           73    3.9gb


或者,如果您之前已启用过它,请导航到 Kibana > Stack Monitoring。

0f5ac0be509fa2997c228d4af788adf.jpg


如果您确定遇到了内存熔断问题,您应考虑暂时增加堆容量,以便给自己喘息的空间,并进行调查。在调查根本原因时,请查看您的集群代理日志或elasticsearch.log, 以此查找之前发生的连续事件。您需要查找:


● 高桶聚合

我发现,搜索在根据搜索大小或存储桶尺寸运行查询之前,临时分配了堆的某个端口,我觉得这太傻了,就设置 了10,000,000。我的运维团队为此很挠头。

● 非优化映射

感到愚蠢的第二个原因是,我认为搜索时如果利用分层报告会比扁平化数据更好(事实并非如此)。

请求量/速度:通常是批处理或异步查询



4.资源不够,扩容


如果您已不止一次启动熔断机制,或者您觉得这个问题将一直存在(例如,始终达到85%,则应该考虑扩展资源了),您就需要仔细查看JVM内存压力,将其作为您的长期堆指标。 您可以在Elasticsearch Service > Deployment中进行检查。

168d8a45870edcb81141f41e0689e1c.jpg


或者您可以根据 _nodes/stats进行计算


GET /_nodes/stats?filter_path=nodes.*.jvm.mem.pools.old
{"nodes": { "node_id": { "jvm": { "mem": { "pools": { "old": {
  "max_in_bytes": 532676608,
  "peak_max_in_bytes": 532676608,
  "peak_used_in_bytes": 104465408,
  "used_in_bytes": 104465408
}}}}}}}


这里


JVM Memory Pressure = used_in_bytes / max_in_bytes


可能会出现的是情况是:elasticsearch.log中的垃圾收集器(gc)事件发生的频率很高,而且持续时间长


[timestamp_short_interval_from_last][INFO ][o.e.m.j.JvmGcMonitorService] [node_id] [gc][number] overhead, spent [21s] collecting in the last [40s]


如果您确认了这一情况,那么您需要考虑一下如何扩展您的集群,或者如何减少对集群的需求。你应该调查并考虑的方面包括:


增加堆资源(堆/节点、节点数量)


减少shards(删除不必要的或旧的数据,利用ILM将数据放入热/冷存储中,之后您就可以缩减数据,关闭那些即使丢失了您也不在乎的数据副本)

相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。 &nbsp;
目录
相关文章
|
Java 数据库连接
Java中的内存泄漏排查与预防方法
Java中的内存泄漏排查与预防方法
|
5月前
|
缓存 监控 Java
说一说 SpringCloud Gateway 堆外内存溢出排查
我是小假 期待与你的下一次相遇 ~
696 5
|
监控 Java
Java中的内存泄漏分析与排查技巧
Java中的内存泄漏分析与排查技巧
|
存储 监控 算法
LeakCanary 的内存泄露问题排查
LeakCanary 的内存泄露问题排查
179 0
|
缓存 算法 安全
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(二)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
151 0
|
缓存 Java C#
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍(一)
【JVM故障问题排查心得】「Java技术体系方向」Java虚拟机内存优化之虚拟机参数调优原理介绍
234 0
|
监控 Java Linux
redisson内存泄漏问题排查
【9月更文挑战第22天】在排查 Redisson 内存泄漏问题时,首先需确认内存泄漏的存在,使用专业工具(如 JProfiler)分析内存使用情况,检查对象实例数量及引用关系。其次,检查 Redisson 使用方式,确保正确释放资源、避免长时间持有引用、检查订阅和监听器。此外,还需检查应用程序其他部分是否存在内存泄漏源或循环引用等问题,并考虑更新 Redisson 到最新版本以修复潜在问题。
459 5
|
JavaScript Java 开发工具
Electron V8排查问题之接近堆内存限制的处理如何解决
Electron V8排查问题之接近堆内存限制的处理如何解决
747 1
|
监控 安全 Java
JVM内存问题之排查Direct Memory泄漏有哪些常用方法
JVM内存问题之排查Direct Memory泄漏有哪些常用方法
568 2

热门文章

最新文章