如何写好提示词Prompt?

简介: 本文由产品专家三桥君撰写,主要探讨如何写出高质量的Prompt,助力AI模型输出优质内容。文章从三个核心方面展开:理解大语言模型(LLM)、积累行业Know-how、提升逻辑表达清晰性。作者结合自身实践经验,强调在AI技术快速发展的背景下,提升Prompt能力的关键在于夯实基础,深入行业,精准表达。通过本文,读者将获得实用的Prompt优化思路,提升AI应用效率。

你好,我是 三桥君

📌本文介绍📌 >>



在深入应用大语言模型和其他AI技术时,我频繁地使用Prompt来指导模型输出。随着实践的增多,我逐渐意识到一个关键问题:如何在不断的使用中提升Prompt的撰写技巧,以更有效地引导AI产生高质量的回答。这一挑战成为了我在AI辅助工作流程中亟待解决的问题。那我是如何写好Prompt呢?

@三桥君_如何写好Prompt呢.png

第一,理解大语言模型(LLM)

要有效地构建提示词(prompt),首先需要对大语言模型(LLM)有深入的理解。不同的模型,如GPT、文心一言和智谱,即使面对相同的提示词,也会产生不同的输出结果。这种差异主要归因于它们在参数设置、训练语料库以及微调策略上的不同。这些差异导致了各个模型在交付使用时的能力各不相同。

在此,我们专注于探讨模型的推理能力。即使是使用相同的表述、方法论和语言,不同模型的输出结果也会大相径庭,这一点已通过对比测试得到验证。

因此,认识到每个模型的特点和能力是编写有效提示词的前提。在撰写提示词时,必须明确针对的是哪一个模型。例如,在使用Claude模型时,采用XML框架性的描述输入可能会取得显著效果,而在ChatGPT模型中使用XML和markdown则可能产生不同的结果。

第二,行业Know-how

在深入理解大语言模型(LLM)并掌握相关技巧后,我们发现市面上流行的所谓“高级操作”大致可以归纳为十条左右。这些技巧确实有助于提升prompt的效果,但它们仍然是在LLM框架内的应用。掌握这些技巧并不意味着就能自动写出高质量的prompt。

接下来,我们进入第二个关键要素:行业Know-how。这是指对特定领域、行业或细分场景的深入理解。例如,在制造业中,对整个工程链流程环节的深入了解,以及每个环节的关键注意点,是决定prompt质量的重要因素。行业专家与新手在撰写prompt时展现的深度差异,直接影响了输出的质量。

大语言模型的崛起引发了对人类工作未来的担忧,但真正的竞争力在于个人的行业Know-how。以UI设计师为例,仅仅掌握软件操作技能是不够的,真正的壁垒在于审美、设计理念和隐性知识的积累。

因此,即使掌握了相同的技巧和知识,不同人撰写的prompt仍会有明显差异。这种差异源于个人知识素养的不同层次,如同编程领域中,对递归和框架体系结构设计的理解,工匠与艺术家之间存在着本质的差异。

总结来说,行业Know-how是区分个人能力高低的关键因素,也是撰写高质量prompt的重要基础。个人的知识深度和素养层次决定了在运用LLM时的表现和成果。

第三,逻辑表达的清晰性

在与其他从事内容创作的朋友交流时,我们发现他们在撰写小红书笔记、制作抖音视频、编写文稿和口播稿等场景中,尽管遵循相同的标准化操作流程(SOP),最终的作品却各不相同。

通过对比分析三个人基于同一SOP撰写的prompt,我们注意到在逻辑表达层面存在差异。这种差异体现在个人是否能够将复杂信息清晰且无矛盾地表达出来。即使知识在脑海中已经形成,关键在于能否准确地传达这些信息。

在审查这些prompt时,我们发现了许多前后不一致的表达。例如,一个prompt可能一开始要求以轻松幽默的语气传达内容,而在后续的工作流程或其他SOP环节中,却又要求以严肃认真的态度对待每个字。这种前后矛盾的表达会显著降低输出质量,因为模型的注意力会因不一致而分散,导致信息传递的权重失衡。

因此,表达时的逻辑一致性至关重要。对于同一个语句,不同的人可能会使用不同的字数来表达,这要求我们认真思考并迭代,以区分是表达的丰富性还是不必要的冗余。清晰、一致的表达是确保prompt有效性和输出质量的关键。

总结

综合来看,撰写有效prompt的关键在于三个核心要素:对大语言模型(LLM)的深入理解、行业Know-how的积累以及逻辑表达的清晰性。这三个环节相辅相成,共同决定了prompt的质量。

在AI技术飞速发展的背景下,LLM模型的能力日新月异,每天都有新的更新和突破。然而,在这股技术浪潮中,我们应当认识到,虽然模型的能力在增强,但真正的挑战在于如何利用这些工具来辅助我们的表达和思考。

因此,三桥君的观点是,我们应该“往回退”,而不是盲目“往前进”。这意味着我们需要回归到基础,加强以下两个方面:

  • ​清晰表达:能否将我们所掌握的知识以清晰、简洁且直达核心的方式表达出来。
  • 行业Know-how:我们是否积累了足够的行业知识和经验。

要做到这一点,我们必须深刻理解自己的行业,深入探究我们感兴趣的领域或课题。只有将这两者结合起来,我们才能撰写出高质量的prompt,使LLM模型真正成为我们表达和创造的有力杠杆。

更多文章⭐ >>



欢迎关注✨三桥君✨获取更多AI产品经理与AI技术的分享,帮你入门AI领域,希望你为行业做出更大贡献。三桥君认为,人人都有机会成为AI专家👏👏👏读到这里,若文章对你有所启发,欢迎一键三连👍👍👍

目录
相关文章
|
4月前
|
人工智能 自然语言处理 供应链
AI技术落地方法论--从技术到生态的系统化落地
本文三桥君围绕AI技术落地难题,提出“点线面体”金字塔法则,系统解析从单点技术突破到行业生态构建的演进路径,并探讨技术支撑底座如何助力AI落地全过程。
233 29
|
4月前
|
人工智能 开发者
【三桥君】Prompt:在AI时代,提问比答案更有价值
在AI技术迅猛发展的时代,产品专家三桥君认为答案已不再稀缺,提出正确的问题才是关键。本文探讨了问题在推动思考、激发创新、发现需求中的核心价值,分享如何通过明确目标、结构化方法和实践技巧提升提问能力,助力在AI时代把握机遇,共创未来。
124 0
|
4月前
|
XML 人工智能 测试技术
在AI应用中Prompt撰写重要却难掌握,‘理解模型与行业知识是关键’:提升迫在眉睫
本文三桥君探讨Prompt优化技巧对AI应用的重要性。内容涵盖理解大语言模型、行业Know-how及Prompt撰写方法,助力提升AI输出质量与应用效率。
239 58
|
4月前
|
人工智能 自然语言处理 测试技术
掌握这5个要点,选对Embedding模型助力RAG系统
三桥君深入解析RAG系统中的Embedding模型选择问题,探讨其在语义理解与检索中的关键作用,并结合任务需求、资源条件等提供实用选型建议。
945 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
三步法打造企业级AI产品,背后藏着怎样的落地方法论?
三桥君分享打造金融级AI产品的三步法:业务梳理找切入点、模型验证技术可行性、大规模验证落地效果。助力AI产品经理掌握核心能力,推动AI在信贷审批、投资管理等场景真正落地。
180 11
|
4月前
|
数据采集 存储 人工智能
AI 产品经理:技术架构图如何打通跨团队沟通壁垒?
本文三桥君深入解析AI产品经理如何绘制技术架构图,打通跨团队沟通壁垒。通过明确产品目标、分层设计与模块交互逻辑,帮助业务与技术团队高效协同,提升项目成功率。
201 8
|
4月前
|
人工智能 运维 监控
AI智能体迈向企业生产线遇难题,如何助力AI智能体服务企业业务?
本文由产品专家三桥君探讨AI智能体从实验室走向企业核心业务的三维系统架构,涵盖应用层、模型层和智算底座。应用层通过LLMOps、Agent工作流和插件生态实现智能体快速部署;模型层提供多源模型接入、精调优化和稳定推理;智算底座则依托异构算力调度与安全运维支撑AI运行。该架构可缩短AI产品交付周期,实现资源弹性分配,满足合规要求,推动AI智能体成为企业增长的新引擎。
122 0
|
4月前
|
人工智能 监控 API
MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
本文产品专家三桥君探讨了以 MCP 为核心的 AI 应用架构设计,从统一接入、数据管理、服务编排到部署策略等维度,系统化分析了 AI 落地的关键环节。重点介绍了 API 网关的多终端适配、数据异步处理流程、LLM 服务的灰度发布与 Fallback 机制,以及 MCP Server 作为核心枢纽的调度功能。同时对比了公有云 API、私有化 GPU 和无服务器部署的适用场景,强调通过全链路监控与智能告警保障系统稳定性。该架构为企业高效整合 AI 能力提供了实践路径,平衡性能、成本与灵活性需求。
249 0
|
4月前
|
人工智能 自然语言处理 前端开发
大模型到AI Agent技术在进化,Function Calling将如何助力这场变革?
AI Agent正成为人工智能发展的新方向,其核心在于Function Calling技术,使AI从对话转向执行任务。本文产品专家三桥君探讨了AI的技术演进历程,从大语言模型到检索增强生成(RAG),再到具备Function Calling能力的AI Agent。Function Calling是AI Agent实现"会做事"的关键,预示着AI应用将迎来更广阔的发展前景。
286 0
|
4月前
|
机器学习/深度学习 人工智能 负载均衡
大语言模型计算成本高,MoE如何有效降低成本?
本文由AI产品专家三桥君深入探讨混合专家(MoE)技术在大语言模型中的应用。MoE通过稀疏激活机制,仅激活与当前任务相关的专家子网络,显著降低计算成本(如LLaMA 4仅激活2-3个专家)。三桥君解析了MoE的核心原理,包括路由机制(动态选择专家)和共享专家(提升泛化能力)等关键技术,并对比传统Transformer模型。MoE的工作流程类比专业团队协作,支持高效推理和千亿级参数扩展。该技术重新定义AI模型标准,为突破性能瓶颈提供新思路。
252 0