AI运动识别插件版本再发布迭代更新,大量新特性更新

简介: 上周,我们对全景AI运动解决方案的uni APP版与小程序版插件进行了新一版迭代更新。其中,uni APP版本显著提升了识别检测性能,修复了已知问题,并新增多项实用功能,全面优化用户体验。在v0.7.0版本中,推出了`convertFrameToBase64()`接口,便于开发者在体测、赛事等场景中更高效地处理帧图像,简化开发流程,助力AI运动应用快速实现。

基于近期用户的应用情况的反馈,在上周的时间节点上,我们精心打造的全景AI运动解决方案中的uni APP版与小程序版插件,均发布了新一版的迭代更新。其中,uni APP版本的更新成效尤为显著,不仅在识别检测性能方面实现了大幅提升,让用户能够享受到更为精准、高效的运动识别体验;还针对此前存在的一些错误进行了全面修复,确保系统运行的稳定性与可靠性;与此同时,更是新增了一系列场景急需的功能,充分满足了用户在不同运动场景下的多样化需求。

v0.7.0版中发布的convertFrameToBase64接口应用

在体测、赛事等场景可能需要留存过程、人脸对比、报告生成等需求,针对此情况为了简化开发者的帧解析工作量,本次的迭代的APP版本中更新了一个convertFrameToBase64()接口;调用此接口(当然也可以saveFrameToAlbum(...)根据实际需要选择)将帧图像转换Base64,再进行展示、传后台处理等操作。使用示例如下:

<template>
    <yz-ai-camera id="camera" class="camera" :device="cameraDevice" resolution="medium" @on-camera-ready="onCameraReady" />
</template>
<script>
export default {
    data(){
        cameraDevice: 'back',
        isSave: true
    },
    methods:{
        onCameraReady() {
            const context = getCameraContext();
            context.startExtractFrame({
                onFrame(frame){
                    console.log(frame.width,frame.height,frame);
                    if(!isSave)
                        return;

                    context.convertFrameToBase64({
                        frame:frame,
                        success(res){
                            console.log(res);
                            //上传、人脸识别等
                        }
                    });
                }
            });

            //5s后停止抽帧
            setTimeout(()=>{
                context.stopExtractFrame();
            },5000);
        }
    }
}
</script>

注:小程序版保存帧图像方案请参考系列中的相应博文。

好了,此新特性就为您介绍到这,请保持关注,AI运动识别插件将保持迭代,助力开发者更简单的实现AI运动小程序、APP。

115969-20250701093733082-1800144899.png

相关文章
|
4月前
|
人工智能 数据安全/隐私保护 Python
小红书图文生成器,小红书AI图文生成工具,python版本软件
Pillow库自动生成符合平台尺寸要求的配图7;3)利用Playwright实现自动化发布流程6。
|
5月前
|
人工智能 小程序 JavaScript
【一步步开发AI运动APP】十、微调优化内置运动分析器,灵活适配不同的应用场景
本文介绍了如何通过【一步步开发AI运动APP】系列博文,利用`ISportOptimizer`对内置运动分析器进行微调优化。相比小程序,APP框架(如uni-app)因技术差异,无法直接修改运动分析器参数,因此提供了统一的优化机制。开发者可通过`ISportOptimizer`获取和更新检测规则、动作样本等,灵活适应不同场景需求,如全民运动赛事的宽松模式或学生体测的严格模式。文中还提供了示例代码,展示如何对具体运动项目(如仰卧起坐)进行优化。需要注意的是,微调优化适用于标准动作的小范围调整,若动作变化过大(如花式跳绳),可期待后续自定义扩展功能。
|
20天前
|
人工智能 JSON 安全
Claude Code插件系统:重塑AI辅助编程的工作流
Anthropic为Claude Code推出插件系统与市场,支持斜杠命令、子代理、MCP服务器等功能模块,实现工作流自动化与团队协作标准化。开发者可封装常用工具或知识为插件,一键共享复用,构建个性化AI编程环境,推动AI助手从工具迈向生态化平台。
224 1
|
6月前
|
人工智能 自然语言处理 前端开发
Trae插件Builder模式深度测评:从编程助手到AI工程师的进化
Trae插件最新推出的Builder模式标志着AI辅助编程工具从简单的代码补全向“AI工程师”角色的转变。该模式允许开发者通过自然语言描述项目需求,自动生成完整的项目结构、代码文件和开发流程,支持VSCode、JetBrains IDE及在线Web版本。Builder模式的核心功能包括自然语言项目初始化、智能项目架构设计和多文件协调代码生成,显著提升了开发效率,降低了技术门槛。然而,它在处理复杂业务逻辑和高度定制化需求方面仍有局限。未来,Builder模式将集成云部署、测试套件生成和DevOps流水线等功能
1354 2
|
28天前
|
人工智能 小程序 搜索推荐
【一步步开发AI运动APP】十二、自定义扩展新运动项目2
本文介绍如何基于uni-app运动识别插件实现“双手并举”自定义扩展运动,涵盖动作拆解、姿态检测规则构建及运动分析器代码实现,助力开发者打造个性化AI运动APP。
|
7月前
|
人工智能 JSON 小程序
【一步步开发AI运动APP】七、自定义姿态动作识别检测——之规则配置检测
本文介绍了如何通过【一步步开发AI运动APP】系列博文,利用自定义姿态识别检测技术开发高性能的AI运动应用。核心内容包括:1) 自定义姿态识别检测,满足人像入镜、动作开始/停止等需求;2) Pose-Calc引擎详解,支持角度匹配、逻辑运算等多种人体分析规则;3) 姿态检测规则编写与执行方法;4) 完整示例展示左右手平举姿态检测。通过这些技术,开发者可轻松实现定制化运动分析功能。
|
3月前
|
传感器 人工智能 自然语言处理
当AI学会跑跳抓:来云栖大会,参加一场“具身智能运动会”
一副AI眼镜帮你实时智能识别、一只机器狗陪你跑跨栏、一条机械臂听你指挥、一场与机器人的点球大战——这可不是科幻电影,这是2025云栖大会即将上演的现实。
192 8
|
2月前
|
人工智能 小程序 开发者
【一步步开发AI运动APP】十一、同时检测识别多人运动,分别进行运动计时计数
本文介绍了如何开发支持多人运动检测的AI运动APP,涵盖多人人体检测、定位及运动分析实现方法,助力开发者打造高性能AI运动应用。
|
4月前
|
机器学习/深度学习 人工智能 文字识别
浏览器AI模型插件下载,支持chatgpt、claude、grok、gemini、DeepSeek等顶尖AI模型!
极客侧边栏是一款浏览器插件,集成ChatGPT、Claude、Grok、Gemini等全球顶尖AI模型,支持网页提问、文档分析、图片生成、智能截图、内容总结等功能。无需切换页面,办公写作效率倍增。内置书签云同步与智能整理功能,管理更高效。跨平台使用,安全便捷,是AI时代必备工具!
280 8
|
4月前
|
存储 网络协议 人工智能
我在网上看到了一篇关于将智能AI、脑机接口接入到大脑的文章之后大发灵感,我现在写写我自己的版本
本项目设想一种脑机接口系统,结合阿里云操作系统与量子意识技术,实现用户通过心灵感应与AI交互、下载知识、远程医疗等操作。系统分为侵入式与非侵入式设备,支持意识上网、意念输入、跨物种通讯等功能,并构建“全宇宙意识互联网”架构,实现与传统网络的数据互通,探索未来人机交互与通信新形态。