【一步步开发AI运动小程序】十三、自定义一个运动分析器,实现计时计数02

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: 本文介绍如何利用“云智AI运动识别小程序插件”开发AI运动小程序,详细解析了俯卧撑动作的检测规则构建与执行流程,涵盖卧撑和撑卧两个姿态的识别规则,以及如何通过继承`sports.SportBase`类实现运动分析器,适用于小程序开发者。

随着人工智能技术的不断发展,各“乐动力”、“天天跳绳”AI运动APP,让云上运动会、线上运动会、健身打卡、AI体育指导等概念空前火热。那么,能否将这些在APP成功应用的场景搬上小程序,分享这些概念的红利呢?本系列文章就带您一步一步从零开始开发一个AI运动小程序,本系列文章将使用“云智AI运动识别小程序插件”,请先行在微信服务市场官网了解详情。

一、运动分析

image.png

如图所示,俯卧撑有卧和撑两个动作姿态组成,从卧到撑或者撑到卧,为一个动作,即计数加1;因此我们分别构建这两个姿态的识别规则,查测到卧撑撑卧的组合计数加1,便可以完成俯卧撑的检测数。

二、检测规则构建

【撑】:
如上图所示的动作1“撑”姿态,我们看到整个身体躯干绷直,双手绷直撑起,手臂与腰部夹角大约80度左右,所以我们构建出以下几个检测规则进行检测:

{
   
    name: '撑状态检查',
    calc: '$and',
    rules: [{
   
        name: '手臂垂直撑起',
        calc: '$or',
        rules: [{
   
            name: '左手臂垂直',
            calc: 'vertical',
            upperKey: 'left_shoulder',
            centerKey: 'left_elbow',
            lowerKey: 'left_wrist',
            offset: 20
        }, {
   
            name: '右手臂垂直',
            calc: 'vertical',
            upperKey: 'right_shoulder',
            centerKey: 'right_elbow',
            lowerKey: 'right_wrist',
            offset: 20
        }]
    }, {
   
        name: '手臂与腰部垂直',
        calc: '$or',
        rules: [{
   
            name: '左手臂与腰齐垂直',
            calc: 'match-angle',
            angleKey: 'left_shoulder',
            secondKey: 'left_elbow',
            thirdKey: 'left_hip',
            angle: 90,
            offset: 25
        }, {
   
            name: '右手臂与腰齐垂直',
            calc: 'match-angle',
            angleKey: 'right_shoulder',
            secondKey: 'right_elbow',
            thirdKey: 'right_hip',
            angle: 90,
            offset: 25
        }]
    }, {
   
        name: '腿部绷直',
        calc: '$or',
        rules: [{
   
            name: '左腿绷直',
            calc: 'match-angle',
            angleKey: 'left_knee',
            secondKey: 'left_ankle',
            thirdKey: 'left_hip',
            angle: 160,
            offset: 20
        }, {
   
            name: '右腿绷直',
            calc: 'match-angle',
            angleKey: 'right_knee',
            secondKey: 'right_ankle',
            thirdKey: 'rgight_hip',
            angle: 160,
            offset: 20
        }]
    }]
};

【卧】:
接下来我们继续看第二个分解动作卧,如上图所示的动作2“卧”姿态,我们看到整个身体躯干也是绷直的,手臂弯曲成约90度,胳膊与腰部齐平,所以我们构建出以下检测规则进行识别:

{
   
    name: '卧动作检查',
    calc: '$and',
    rules: [{
   
        name: '躯干卧倒状态',
        calc: 'lie',
        offset: 30
    }, {
   
        name: '手臂弯曲检查',
        calc: '$or',
        rules: [{
   
            name: '左手臂弯曲状态',
            calc: 'match-angle',
            angleKey: 'left_elbow',
            secondKey: 'left_shoulder',
            thirdKey: 'left_wrist',
            angle: 115,
            offset: 15
        }, {
   
            name: '右手臂弯曲状态',
            calc: 'match-angle',
            angleKey: 'right_elbow',
            secondKey: 'right_shoulder',
            thirdKey: 'right_wrist',
            angle: 115,
            offset: 15
        }]
    }, {
   
        name: '手臂与腰齐平查',
        calc: '$or',
        rules: [{
   
            name: '左手臂与腰齐平查',
            calc: 'match-angle',
            angleKey: 'left_shoulder',
            secondKey: 'left_elbow',
            thirdKey: 'left_hip',
            angle: 35,
            offset: 15
        }, {
   
            name: '右手臂与腰齐平查',
            calc: 'match-angle',
            angleKey: 'right_shoulder',
            secondKey: 'right_elbow',
            thirdKey: 'right_hip',
            angle: 35,
            offset: 15
        }]
    }]
}

到这,我们就把运动检测规则编写好了,规则同时考虑了左、右侧入镜的问题。

三、执行检测

实现运动分析器,我们需要继承扩展sports.SportBase抽象类,该类已经为您实现了基本的计时、计数能力,您只要重写pushing方法,在此方法调用calc.Calculator计算器进行规则计算,通过则调用计时计数即可,代码如下:

    pushing(body) {
   

        if (utils.isNone(body))
            return;

        //卧
        if (this._calculator.calculating(body, this.rules.liePose)) {
   
            this.stateTran = 1;
            return;
        }

        //撑
        if (!this._calculator.calculating(body, this.rules.upPose) || this.stateTran !== 1)
            return;

        this.stateTran = -1;
        this.countTimes();
        this.emitTick();  //触发计数 

    }

四、后计

以上便是俯卧撑运动的分析器的适配过程,当然还可以使用姿态相似度能力进行动作识别,效率相对会更高些,详情请参考前面的相似度使用章节及API文档。

相关文章
|
16天前
|
人工智能 安全 API
20 万奖金池就位!Higress AI 网关开发挑战赛参赛指南
本次赛事共设三大赛题方向,参赛者可以任选一个方向参赛。本文是对每个赛题方向的参赛指南。
122 10
|
15天前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
17天前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
1503 39
|
19天前
|
人工智能 自然语言处理 JavaScript
VTJ.PRO如何利用AI实现低代码开发
VTJ.PRO深度集成AI,实现设计稿转代码、自然语言生成组件等功能,显著提升低代码开发效率。支持双向代码穿梭、企业级工程化与多模型协同决策,兼顾开发速度与代码自由度,助力项目周期大幅压缩。
139 43
VTJ.PRO如何利用AI实现低代码开发
|
人工智能 自然语言处理 前端开发
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
淘宝推荐信息流业务,常年被“需求多、技术栈杂、协作慢”困扰,需求上线周期动辄一周。WaterFlow——一套 AI 驱动的端到端开发新实践,让部分需求两天内上线,甚至产品经理也能“自产自销”需求。短短数月,已落地 30+ 需求、自动生成 5.4 万行代码,大幅提升研发效率。接下来,我们将揭秘它是如何落地并改变协作模式的。
282 37
产品经理也能“开发”需求?淘宝信息流从需求到上线的AI端到端实践
|
20天前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
24天前
|
人工智能 小程序 开发者
【一步步开发AI运动APP】十二、自定义扩展新运动项目03
继【一步步开发AI运动小程序】后,我们推出新系列【一步步开发AI运动APP】,助开发者打造高性能、优体验的AI运动应用。本文详解自定义扩展运动分析器的统一管理实现,提升代码复用性与可维护性,涵盖APP与小程序插件差异及完整代码示例,助力AI运动场景深度拓展。
|
28天前
|
人工智能 自然语言处理 数据可视化
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
苏超赛事管理系统基于smardaten无代码平台,通过AI生成与可视化配置,实现球队、赛程、积分等全流程数字化管理,提升效率、优化体验、支持数据可视化,助力赛事高效运营。
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
|
21天前
|
人工智能 Cloud Native 自然语言处理
拔俗AI智能体服务开发:你的7x24小时数字员工,让企业效率飙升的秘密武器
在“人效为王”时代,企业面临服务响应慢、成本高、协同难等痛点。阿里云AI智能体以自主决策、多模态交互、持续学习三大引擎,打造永不疲倦的“数字员工”,实现7×24小时高效服务,助力企业降本增效、驱动创新增长。(238字)
|
28天前
|
人工智能 小程序 搜索推荐
【一步步开发AI运动APP】十二、自定义扩展新运动项目2
本文介绍如何基于uni-app运动识别插件实现“双手并举”自定义扩展运动,涵盖动作拆解、姿态检测规则构建及运动分析器代码实现,助力开发者打造个性化AI运动APP。

热门文章

最新文章