"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"

简介: 【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。

CLIP(Contrastive Language-Image Pre-training)是OpenAI在2021年发布的一种用于图像和文本联合表示学习的模型。其核心思想是通过对比学习来预训练一个模型,使其能够理解图像和文本之间的关系。下面,我们将详细介绍CLIP模型,包括其网络结构、工作原理、训练过程以及应用示例。

CLIP模型由图像编码器和文本编码器两部分组成。图像编码器负责将图像转换为特征向量,可以是卷积神经网络(如ResNet)或Transformer模型(如ViT)。文本编码器则负责将文本转换为特征向量,通常是一个Transformer模型。这两个编码器通过共享一个向量空间来实现跨模态的信息交互与融合。

CLIP的工作原理可以概括为“对比学习”。对比学习是一种学习相似性度量的方法,其核心思想是通过将同一组数据中的不同样本对进行比较,来学习它们之间的相似度或差异度。在CLIP模型中,对比学习被用来训练模型学习视觉和语言的相互关系。

在训练过程中,CLIP使用大规模的图像-文本对数据集进行预训练,例如从互联网上收集的4亿个图像-文本对。这些数据集包含了丰富的图像和对应的描述文本,使得模型能够学习到广泛的视觉概念和语言表达。对于每个图像-文本对,模型会计算图像和文本的特征向量,并使用对比损失函数来优化模型参数。对比损失函数的目标是使得匹配的图像-文本对的特征向量尽可能接近,而不匹配的图像-文本对的特征向量尽可能远离。

具体来说,在训练阶段,CLIP模型会接收一批图像-文本对作为输入,并尝试将匹配的图像和文本向量在共同的语义空间中拉近,而将不匹配的向量推远。这是通过计算类别标签与预测的余弦相似度来实现的,相似度最高的标签即是预测的分类结果。这种学习方式使得CLIP能够捕捉到图像和文本之间的深层语义联系,实现跨模态理解。

下面是一个使用CLIP模型进行zero-shot图像分类的示例代码:

python
import os
import clip
import torch
from torchvision.datasets import CIFAR100

加载模型

device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)

下载数据集

cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)

准备输入

image, class_id = cifar100[3637]
image_input = preprocess(image).unsqueeze(0).to(device)
text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)

计算特征

with torch.no_grad():
image_features = model.encode_image(image_input)
text_features = model.encode_text(text_inputs)

选择最相似的标签

image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
values, indices = similarity[0].topk(5)

打印结果

print("\nTop predictions:\n")
for value, index in zip(values, indices):
print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")
这段代码展示了如何使用CLIP模型对一张图像进行zero-shot分类,并找出最相似的5个标签。通过调整输入文本和图像,CLIP模型可以应用于多种任务,如图像分类、文本-图像检索等。

总的来说,CLIP模型打破了语言与视觉之间的界限,为人工智能的未来发展开辟了新的道路。其强大的跨模态理解能力使得它在多个领域都有广泛的应用前景。

相关文章
|
27天前
|
云安全 人工智能 自然语言处理
阿里云x硅基流动:AI安全护栏助力构建可信模型生态
阿里云AI安全护栏:大模型的“智能过滤系统”。
|
2月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
581 109
|
3月前
|
人工智能 自然语言处理 搜索推荐
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
AI Compass前沿速览:Qoder Agentic编程、vivo Vision头显、AIRI桌面伴侣、RM-Gallery奖励模型平台
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1133 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
150 1
|
23天前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
222 120
|
3月前
|
机器学习/深度学习 人工智能 监控
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
大型动作模型(LAMs)作为人工智能新架构,融合神经网络与符号逻辑,实现企业重复任务的自动化处理。通过神经符号集成、动作执行管道、模式学习、任务分解等核心技术,系统可高效解析用户意图并执行复杂操作,显著提升企业运营效率并降低人工成本。其自适应学习能力与上下文感知机制,使自动化流程更智能、灵活,为企业数字化转型提供坚实支撑。
279 0
大型动作模型LAM:让企业重复任务实现80%效率提升的AI技术架构与实现方案
|
3月前
|
人工智能 JavaScript 测试技术
Cradle:颠覆AI Agent 操作本地软件,AI驱动的通用计算机控制框架,如何让基础模型像人一样操作你的电脑?
Cradle 是由 BAAI‑Agents 团队开源的通用计算机控制(GCC)多模态 AI Agent 框架,具备视觉输入、键鼠操作输出、自主学习与反思能力,可操作各类本地软件及游戏,实现任务自动化与复杂逻辑执行。
311 6

热门文章

最新文章