前端大模型入门(三):编码(Tokenizer)和嵌入(Embedding)解析 - llm的输入

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
简介: 本文介绍了大规模语言模型(LLM)中的两个核心概念:Tokenizer和Embedding。Tokenizer将文本转换为模型可处理的数字ID,而Embedding则将这些ID转化为能捕捉语义关系的稠密向量。文章通过具体示例和代码展示了两者的实现方法,帮助读者理解其基本原理和应用场景。

 LLM的核心是通过对语言进行建模来生成自然语言输出或理解输入,两个重要的概念在其中发挥关键作用:TokenizerEmbedding。本篇文章将对这两个概念进行入门级介绍,并提供了针对前端的js示例代码,帮助读者理解它们的基本原理/作用和如何使用。

1. 什么是Tokenizer?

Tokenizer 是一种将自然语言文本转化为模型可以处理的数字表示的工具。自然语言是由词、子词或字符组成的,而模型无法直接处理这些符号,它们只能处理数字。因此,Tokenizer的主要任务就是将文本转换为一系列数字。

1.1 Tokenizer的工作原理

Tokenizer通过查表的方式,将每个单词、子词或者字符映射为一个唯一的整数ID。这些整数ID作为模型的输入,帮助模型将语言处理为结构化的形式。

以句子“我喜欢学习”为例,一个简单的Tokenizer可能将其分解为每个汉字,并为每个汉字分配一个唯一的整数ID,如下:

  • “我” -> 1
  • “喜欢” -> 2, 3
  • “学习” -> 4, 5

在实际应用中,很多语言模型使用更复杂的分词方式,如子词分割。子词分割允许模型将罕见词分割为多个子词单元,从而提升泛化能力。例如,常见的子词分割方法包括BPE(Byte Pair Encoding)WordPiece,这些方法可以将长词拆分为更小的、频率更高的子词,增强模型处理罕见词汇的能力。

1.2 Tokenizer的种类

  • 词级别(Word-level)Tokenizer:将每个词作为一个Token。适用于语言如英文等分隔明确的文本,但对于中文等无空格分隔的语言不太适合。
  • 子词级别(Subword-level)Tokenizer:基于统计方法,将文本分割为高频子词单元。BPE和WordPiece是常见的子词分割算法。
  • 字符级别(Character-level)Tokenizer:将每个字符视为一个Token。这种方法适用于字符构成较复杂的语言(如中文),但会导致较长的序列输入。

1.3 为什么需要Tokenizer?

  • 将文本转化为数字:语言模型需要处理的是数字而不是文本。Tokenizer将文本符号转换为数字ID,是进入模型的第一步。
  • 词汇管理:通过分词,Tokenizer建立了一个词汇表,其中每个词或子词都对应一个唯一的ID。这让模型可以在推理时迅速查找词的表示。
  • 提升模型的泛化能力:通过分词,特别是子词分词,模型能够处理罕见词和新词,因为它可以将新词拆解为更小的子词单元,避免出现完全未知的词。

1.4 Tokenizer 示例代码

       其实python相关的库比较多,这里就用一个0依赖的js库来测试,自己也可以子串匹配实现。

npm install @lenml/tokenizers

image.gif

import { fromPreTrained } from "@lenml/tokenizer-llama3";
const tokenizer = fromPreTrained();
const tokens = tokenizer.apply_chat_template(
  [
    {
      role: "system",
      content: "你是一个有趣的ai助手",
    },
    {
      role: "user",
      content: "好好,请问怎么去月球?",
    },
  ]
) as number[];
// 转化成token的数组
console.log(tokens);
const chat_content = tokenizer.decode(tokens);
// 还原了的数据
console.log(chat_content);

image.gif

2. 什么是Embedding?

Embedding 是将Tokenizer生成的整数ID转化为稠密的向量表示的过程。与Tokenizer将文本转换为离散的整数ID不同,Embedding生成的是连续的实数值向量,这些向量能够捕捉词之间的语义关系。

2.1 Embedding的工作原理

在Embedding阶段,语言模型通过查表的方式,将每个整数ID映射到一个高维向量空间中的向量。这个向量通常是一个固定维度的向量(例如,300维、512维或768维),用来表示单词或子词的语义特征。

例如,经过Tokenizer处理的文本“我喜欢学习”可能会生成整数ID序列 [1, 2, 3, 4, 5]。在Embedding阶段,这些ID会被转换为稠密向量表示,如:

  • “我” -> [0.25, -0.34, 0.15, ...]
  • “喜欢” -> [0.12, 0.57, -0.22, ...], [0.11, -0.09, 0.31, ...]
  • “学习” -> [0.33, -0.44, 0.19, ...], [0.09, 0.23, -0.41, ...]

这些向量并不是随机生成的,它们是在模型的训练过程中被学习得到的。Embedding向量的维度固定,但向量的数值根据模型对词语上下文的理解不断更新和优化,最终形成一个语义丰富的向量表示。

2.2 Embedding的种类

  • 词向量(Word Embedding):如Word2Vec、GloVe等方法,通过静态词向量将词语映射到向量空间中。这些方法的Embedding是静态的,即同一个词在不同上下文中具有相同的向量。
  • 上下文相关的Embedding:如BERT、GPT等方法生成的Embedding,是基于上下文的动态向量。同一个词在不同的上下文中可能有不同的向量表示,从而更加精准地捕捉语言中的多义性和语境变化。

2.3 为什么需要Embedding?

  • 捕捉词之间的语义关系:通过Embedding,模型可以将语义相似的词表示为相近的向量。例如,“猫”和“狗”的向量在空间中可能非常接近,而“猫”和“车”的向量则会相距较远。
  • 连续性表示:与离散的整数ID不同,Embedding向量是连续的。这使得模型能够更好地进行计算和优化,因为连续的数值表示可以更容易进行梯度计算和模型学习。
  • 语义压缩:Embedding将高维的语言信息压缩到一个固定的向量空间中,这样模型就可以高效地处理输入并捕捉到其中的重要语义特征。

2.4 使用 TensorFlow.js实现一个嵌入层

接下来,我们用 TensorFlow.js 来实现一个简单的Embedding层。

首先安装 TensorFlow.js:

npm install @tensorflow/tfjs

image.gif

然后我们创建一个简单的Embedding层,将Token IDs转换为对应的Embedding向量。

const tf = require('@tensorflow/tfjs');
// 假设词汇表大小为10000,嵌入维度为300
const vocabSize = 10000;
const embeddingDim = 300;
// 创建一个Embedding层
const embeddingLayer = tf.layers.embedding({inputDim: vocabSize, outputDim: embeddingDim});
// 输入是之前Tokenizer的Token IDs
const tokenIds = tf.tensor([[1045, 2293, 4083]]);  // Batch size为1,三个Token
// 使用Embedding层将Token IDs转化为Embedding向量
const embeddings = embeddingLayer.apply(tokenIds);
embeddings.print();  // 输出Embedding结果

image.gif

在这个示例中,我们定义了一个词汇表大小为10000、嵌入维度为300的Embedding层。tokenIds代表之前从Tokenizer生成的Token ID序列,经过Embedding层后,生成对应的300维度的稠密向量。

注意下tfjs在浏览器和nodejs的时候不同的backend性能和表现有点差异,但基本可用,详细接口参考TensorFlow.js API

另外有时候进行向量化比较吃资源,或者需要处理大量文本和超高向量时,可使用各个AI平台提供的接口,一般叫做嵌入/向量化/句向量等

3. Tokenizer和Embedding的关系

在LLM中,TokenizerEmbedding是文本处理的两个连续步骤:

  1. Tokenizer负责将文本分割为Token,并将这些Token映射为离散的整数ID。
  2. Embedding则将这些整数ID进一步转化为稠密的向量表示,以便模型能够进行深度学习和优化。

它们的关系可以简单总结为:Tokenizer将语言中的离散符号表示成模型可以识别的离散ID,而Embedding则将这些离散ID转化为连续的向量,以便捕捉词之间的语义关系。

4. 总结

在大规模语言模型(LLM)中,TokenizerEmbedding是两个基础且关键的步骤。Tokenizer通过分词和映射,将文本转化为模型可以处理的数字序列。而Embedding则将这些数字序列进一步转化为语义丰富的向量表示。这两个步骤共同构成了LLM处理自然语言输入的基础,为模型的语义理解和生成提供了强大的支持。

对于初学者来说,理解Tokenizer和Embedding的作用及其背后的原理,将为深入学习LLM及其应用打下坚实的基础。

看了这么多,作为前端的你,还不赶紧npm install一下然后测试测试? ps: tfjs有cdn版本,简单测试可以直接用url引入,可能比安装更简单就是要等待


相关文章
|
17天前
|
存储 移动开发 缓存
前端如何存储数据:Cookie、LocalStorage 与 SessionStorage 全面解析
本文全面解析前端三种数据存储方式:Cookie、LocalStorage与SessionStorage。涵盖其定义、使用方法、生命周期、优缺点及典型应用场景,帮助开发者根据登录状态、用户偏好、会话控制等需求,选择合适的存储方案,提升Web应用的性能与安全性。(238字)
287 0
|
2月前
|
机器学习/深度学习 人工智能 数据安全/隐私保护
阿里云 Qwen3 全栈 AI 模型:技术解析、开发者实操指南与 100 万企业落地案例
阿里云发布Qwen3全栈AI体系,推出Qwen3-Max、Qwen3-Next等七大模型,性能全球领先,开源生态超6亿次下载。支持百万级上下文、多模态理解,训练成本降90%,助力企业高效落地AI。覆盖制造、金融、创作等场景,提供无代码与代码级开发工具,共建超级AI云生态。
569 6
|
19天前
|
存储 缓存 算法
淘宝买家秀 API 深度开发:多模态内容解析与合规推荐技术拆解
本文详解淘宝买家秀接口(taobao.reviews.get)的合规调用、数据标准化与智能推荐全链路方案。涵盖权限申请、多模态数据清洗、情感分析、混合推荐模型及缓存优化,助力开发者提升审核效率60%、商品转化率增长28%,实现UGC数据高效变现。
|
2月前
|
人工智能 自然语言处理 算法
现代AI工具深度解析:从GPT到多模态的技术革命与实战应用
蒋星熠Jaxonic,AI技术探索者,深耕代码生成、多模态AI与提示词工程。分享AI工具架构、实战应用与优化策略,助力开发者提升效率,共赴智能编程新纪元。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
38_多模态模型:CLIP的视觉-语言对齐_深度解析
想象一下,当你看到一张小狗在草地上奔跑的图片时,你的大脑立刻就能将视觉信息与"小狗"、"草地"、"奔跑"等概念联系起来。这种跨模态的理解能力对于人类来说似乎是理所当然的,但对于人工智能系统而言,实现这种能力却经历了长期的技术挑战。多模态学习的出现,标志着AI从单一模态处理向更接近人类认知方式的综合信息处理迈出了关键一步。
|
1月前
|
监控 安全 Docker
10_大模型开发环境:从零搭建你的LLM应用平台
在2025年,大语言模型(LLM)已经成为AI应用开发的核心基础设施。无论是企业级应用、科研项目还是个人创新,拥有一个高效、稳定、可扩展的LLM开发环境都至关重要。
|
1月前
|
人工智能 监控 安全
06_LLM安全与伦理:部署大模型的防护指南
随着大型语言模型(LLM)在各行业的广泛应用,其安全风险和伦理问题日益凸显。2025年,全球LLM市场规模已超过6400亿美元,年复合增长率达30.4%,但与之相伴的是安全威胁的复杂化和伦理挑战的多元化
|
2月前
|
存储 缓存 负载均衡
LLM推理成本直降60%:PD分离在大模型商业化中的关键价值
在LLM推理中,Prefill(计算密集)与Decode(访存密集)阶段特性不同,分离计算可提升资源利用率。本文详解vLLM框架中的PD分离实现及局限,并分析Dynamo、Mooncake、SGLang等主流方案,探讨KV缓存、传输机制与调度策略,助力LLM推理优化。建议点赞收藏,便于后续查阅。
1153 1

推荐镜像

更多
  • DNS