大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节完成的内容如下:


RDD容错机制

RDD分区机制

RDD分区器

RDD自定义分区器

广播变量

基本介绍

有时候需要在多个任务之间共享变量,或者在任务(Task)和 Driver Program 之间共享变量。

为了满足这个需求,Spark提供了两种类型的变量。


广播变量(broadcast variable)

累加器(accumulators)

广播变量、累加器的主要作用是为了优化Spark程序。

广播变量将变量在节点的Executor之间进行共享(由Driver广播),广播变量用来高效分发较大的对象,向所有工作节点(Executor)发送一个较大的只读值,以供一个或多个操作使用。


使用广播变量的过程如下:


对一个类型T的对象调用SparkContext.broadcast创建一个Broadcast[T]对象,任何可序列化的类型都可以这么实现(在Driver端)

通过Value属性访问该对象的值(Executor中)

变量只会被分到各个Executor一次,作为只读值处理

广播变量的相关参数:

  • spark.broadcast.blockSize(缺省值: 4m)
  • spark.broadcast.checksum(缺省值:true)
  • spark.broadcast.compree(缺省值:true)

变量应用

普通JOIN

MapSideJoin

生成数据 test_spark_01.txt

1000;商品1
1001;商品2
1002;商品3
1003;商品4
1004;商品5
1005;商品6
1006;商品7
1007;商品8
1008;商品9

生成数据格式如下:

生成数据 test_spark_02.txt

10000;订单1;1000
10001;订单2;1001
10002;订单3;1002
10003;订单4;1003
10004;订单5;1004
10005;订单6;1005
10006;订单7;1006
10007;订单8;1007
10008;订单9;1008

生成的数据格式如下:

编写代码1

我们编写代码进行测试

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}


object JoinDemo {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("JoinDemo")
      .setMaster("local[*]")

    val sc = new SparkContext(conf)
    sc.hadoopConfiguration.setLong("fs.local.block.size", 128 * 1024 * 1024)

    val productRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_01.txt")
      .map {
        line => val fields = line.split(";")
          (fields(0), line)
      }

    val orderRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_02.txt", 8)
      .map {
        line => val fields = line.split(";")
          (fields(2), line)
      }

    val resultRDD = productRDD.join(orderRDD)
    println(resultRDD.count())
    Thread.sleep(100000)
    sc.stop()
  }

}

编译打包1

mvn clean package
• 1

并上传到服务器,准备运行

运行测试1

spark-submit --master local[*] --class icu.wzk.JoinDemo spark-wordcount-1.0-SNAPSHOT.jar
• 1

提交任务并执行,注意数据的路径,查看下图:

运行结果可以查看到,运行了: 2.203100 秒 (取决于你的数据量的多少)



运行结果可以查看到,运行了: 2.203100 秒 (取决于你的数据量的多少)

2024-07-19 10:35:08,808 INFO  [main] scheduler.DAGScheduler (Logging.scala:logInfo(54)) - Job 0 finished: count at JoinDemo.scala:32, took 2.203100 s
200

编写代码2

接下来,我们对比使用 MapSideJoin 的方式

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

object MapSideJoin {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("MapSideJoin")
      .setMaster("local[*]")

    val sc = new SparkContext(conf)
    sc.hadoopConfiguration.setLong("fs.local.block.size", 128 * 1024 * 1024)

    val productRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_01.txt")
      .map {
        line => val fields = line.split(";")
          (fields(0), line)
      }

    val productBC = sc.broadcast(productRDD.collectAsMap())

    val orderRDD: RDD[(String, String)] = sc
      .textFile("data/test_spark_02.txt")
      .map {
        line => val fields = line.split(";")
          (fields(2), line)
      }

    val resultRDD = orderRDD
      .map {
        case (pid, orderInfo) =>
          val productInfo = productBC.value
          (pid, (orderInfo, productInfo.getOrElse(pid, null)))
      }
    println(resultRDD.count())

    sc.stop()
  }

}

编译打包2

mvn clean package
• 1

编译后上传到服务器准备执行:

运行测试2

spark-submit --master local[*] --class icu.wzk.MapSideJoin spark-wordcount-1.0-SNAPSHOT.jar

启动我们的程序,并观察结果

我们可以观察到,这次只用了 0.10078 秒就完成了任务:

累加器

基本介绍

累加器的作用:可以实现一个变量在不同的Executor端能保持状态的累加。

累加器在Driver端定义、读取,在Executor中完成累加。

累加器也是Lazy的,需要Action触发:Action触发一次,执行一次;触发多次,执行多次。


Spark内置了三种类型的累加器,分别是:


LongAccumulator 用来累加整数型

DoubleAccumulator 用来累加浮点型

CollectionAccumulator 用来累加集合元素

运行测试

我们可以在 SparkShell 中进行一些简单的测试,目前我在 h122 节点上,启动SparkShell

spark-shell --master local[*]

启动的主界面如下:

写入如下的内容进行测试:


val data = sc.makeRDD("hadoop spark hive hbase java scala hello world spark scala java hive".split("\\s+"))
val acc1 = sc.longAccumulator("totalNum1")
val acc2 = sc.doubleAccumulator("totalNum2")
val acc3 = sc.collectionAccumulator[String]("allwords")

我们进行测试的结果如下图所示:

继续编写一段进行测试:

val rdd = data.map{word => acc1.add(word.length); acc2.add(word.length); acc3.add(word); word}
rdd.count
rdd.collect

println(acc1.value)
println(acc2.value)
println(acc3.value)

我们进行测试的结果如下:

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 分布式计算 大数据
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
MaxCompute全新推出了聚簇优化推荐功能。该功能基于 31 天历史运行数据,每日自动输出全局最优 Hash Cluster Key,对于10 GB以上的大型Shuffle场景,这一功能将直接带来显著的成本优化。
174 3
|
3月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
2月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
227 4
MaxCompute 聚簇优化推荐原理
|
2月前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
116 4
|
2月前
|
大数据 数据挖掘 定位技术
买房不是拍脑袋:大数据教你优化房地产投资策略
买房不是拍脑袋:大数据教你优化房地产投资策略
114 2
|
3月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据在智能物流运输车辆智能调度与路径优化中的技术实现(218)
本文深入探讨了Java大数据技术在智能物流运输中车辆调度与路径优化的应用。通过遗传算法实现车辆资源的智能调度,结合实时路况数据和强化学习算法进行动态路径优化,有效提升了物流效率与客户满意度。以京东物流和顺丰速运的实际案例为支撑,展示了Java大数据在解决行业痛点问题中的强大能力,为物流行业的智能化转型提供了切实可行的技术方案。
|
3月前
|
机器学习/深度学习 数据采集 搜索推荐
你以为是“说走就走”?其实是“算好才走”:大数据是怎么悄悄优化旅游体验的?
你以为是“说走就走”?其实是“算好才走”:大数据是怎么悄悄优化旅游体验的?
81 0