Numpy 数组的一些集合操作

简介: Numpy 数组的一些集合操作

我们知道两个 set 对象之间,可以取交集、并集、差集、对称差集,举个例子:

s1 = {1, 2, 3}
s2 = {2, 3, 4}
"""
&: 交集
|: 并集 
-: 差集
^: 对称差集
"""
# 以下几种方式是等价的
# 但是一般我们都会使用操作符来进行处理,因为比较方便
print(s1 & s2)
print(s1.intersection(s2))
print(set.intersection(s1, s2))
"""
{2, 3}
{2, 3}
{2, 3}
"""
print(s1 | s2)
print(s1.union(s2))
print(set.union(s1, s2))
"""
{1, 2, 3, 4}
{1, 2, 3, 4}
{1, 2, 3, 4}
"""
print(s1 - s2, s2 - s1)
print(s1.difference(s2),
      s2.difference(s1))
print(set.difference(s1, s2),
      set.difference(s2, s1))
"""
{1} {4}
{1} {4}
{1} {4}
"""
print(s1 ^ s2)
print(s1.symmetric_difference(s2))
print(set.symmetric_difference(s1, s2))
"""
{1, 4}
{1, 4}
{1, 4}
"""
# 另外,我们还可以同时对多个集合操作,不仅仅是两个
print({1, 2, 3} & {2, 3, 4} & {3, 4, 5})  # {3}

那么 Numpy 的数组之间,可不可以执行这些操作呢?答案是可以的,Numpy 提供了一些 API,用于数组之间的集合运算

但需要注意,数组虽然也支持 & 等操作符,但是它们代表的意义和集合无关。

import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([2, 3, 4])
# 两个数组 &
# 表示将数组里面对应的元素分别进行"按位与"操作
print(arr1 & arr2)  # [0 2 0]

所以我们需要使用 Numpy 提供的 API 进行运算。

import numpy as np
arr1 = np.array([1, 2, 2, 3])
arr2 = np.array([2, 3, 4, 4])
# 取交集
print(
    np.intersect1d(arr1, arr2)
)  # [2 3]
# 取并集
print(
    np.union1d(arr1, arr2)
)  # [1 2 3 4]
# 取差集
print(
    np.setdiff1d(arr1, arr2),
    np.setdiff1d(arr2, arr1)
)  # [1] [4]
# 取对称差集
print(
    np.setxor1d(arr1, arr2)
)  # [1 4]

接收两个数组,返回一个数组。并且原始数组中的元素允许重复,对结果没有影响。

另外,上面的函数都只能接收两个数组,如果我们想同时对任意多个数组操作呢?很简单,使用 reduce 即可。

from functools import reduce
import numpy as np
arr1 = np.array([1, 2, 3])
arr2 = np.array([2, 3, 4])
arr3 = np.array([3, 4, 5])
print(
    reduce(np.intersect1d,
           [arr1, arr2, arr3])
)  # [3]

总的来说还是比较简单的。

相关文章
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
248 0
|
11月前
|
计算机视觉 Python
PIL图像转换为Numpy数组:技术与案例详解
本文介绍了如何将PIL图像转换为Numpy数组,以便利用Numpy进行数学运算和向量化操作。首先简要介绍了PIL和Numpy的基本功能,然后详细说明了转换过程,包括导入库、打开图像文件、使用`np.array()`或`np.asarray()`函数进行转换,并通过打印数组形状验证转换结果。最后,通过裁剪、旋转和缩放等案例展示了转换后的应用,以及如何将Numpy数组转换回PIL图像。此外,还介绍了处理base64编码图像的完整流程。
393 4
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
367 10
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
220 1
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
197 2
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
629 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
410 4
|
机器学习/深度学习 并行计算 调度
CuPy:将 NumPy 数组调度到 GPU 上运行
CuPy:将 NumPy 数组调度到 GPU 上运行
502 1
|
编译器 Linux API
基于类型化 memoryview 让 Numpy 数组和 C 数组共享内存
基于类型化 memoryview 让 Numpy 数组和 C 数组共享内存
193 0
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
104 0

热门文章

最新文章