AI大模型企业应用实战-为Langchain Agent添加记忆功能

本文涉及的产品
多模态交互后付费免费试用,全链路、全Agent
简介: 【8月更文挑战第18天】

0 前言

在开发复杂的AI应用时,赋予Agent记忆能力是一个关键步骤。这不仅能提高Agent的性能,还能使其在多轮对话中保持上下文连贯性。本文将详细介绍如何在Langchain框架中为Agent添加记忆功能,并深入解析每个步骤的原理和最佳实践。

Agent记忆功能的核心组件

在Langchain中,构建具有记忆功能的Agent主要涉及三个核心组件:

  1. 工具(Tools): Agent用来执行特定任务的功能模块。
  2. 记忆(Memory): 存储和检索对话历史的组件。
  3. 大语言模型(LLM): 负责理解输入、决策和生成响应的核心智能体。

这三个组件的协同工作使Agent能够在多轮对话中保持连贯性并做出明智的决策。

1 构建Agent可用工具

首先,我们需要定义Agent可以使用的工具。

# 构建一个搜索工具,Langchain提供的一个封装,用于进行网络搜索。
search = SerpAPIWrapper()
# 创建一个数学计算工具,特殊的链,它使用LLM来解析和解决数学问题。
llm_math_chain = LLMMathChain(
    llm=llm,
    verbose=True
)
tools = [
    Tool(
        name = "Search",
        func=search.run,
        description="useful for when you need to answer questions about current events or the current state of the world"
    ),
    Tool(
        name="Calculator",
        func=llm_math_chain.run,
        description="useful for when you need to answer questions about math"
    ),
]
print(tools)

2 增加memory组件

接下来,我们需要为Agent添加记忆功能。Langchain提供了多种记忆组件,这里我们使用ConversationBufferMemory:

from langchain.memory import ConversationBufferMemory

# 记忆组件
memory = ConversationBufferMemory(
    # 指定了存储对话历史的键名
    memory_key="chat_history",
      # 确保返回的是消息对象,而不是字符串,这对于某些Agent类型很重要
    return_messages=True
)

3 定义agent

现在我们有了工具和记忆组件,可以初始化我们的Agent了:

from langchain.agents import AgentType, initialize_agent

agent_chain = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.OPENAI_FUNCTIONS, 
    verbose=True, 
    handle_parsing_errors=True,
    memory=memory
)

这里的关键点是:

  • AgentType.OPENAI_FUNCTIONS: 这种Agent类型特别适合使用OpenAI的function calling特性。
  • verbose=True: 启用详细输出,有助于调试。
  • handle_parsing_errors=True: 自动处理解析错误,提高Agent的稳定性。
  • memory=memory: 将我们之前定义的记忆组件传递给Agent。

4 查看默认的agents prompt啥样

了解Agent使用的默认提示词模板非常重要,这有助于我们理解Agent的行为并进行必要的调整:

print(agent_chain.agent.prompt.messages)
print(agent_chain.agent.prompt.messages[0])
print(agent_chain.agent.prompt.messages[1])
print(agent_chain.agent.prompt.messages[2])

这将输出Agent使用的默认提示词模板。通常包括系统消息、人类消息提示词模板和AI消息模板。

5 优化Agent配置

为了更好地利用记忆功能,我们需要修改Agent的配置,确保它在每次交互中都能访问对话历史。

需要使用agent_kwargs传递参数,将chat_history传入

agent_chain = initialize_agent(
    tools, 
    llm, 
    agent=AgentType.OPENAI_FUNCTIONS, 
    verbose=True, 
    handle_parsing_errors=True,#处理解析错误
    agent_kwargs={
   
   
        "extra_prompt_messages":[MessagesPlaceholder(variable_name="chat_history"),MessagesPlaceholder(variable_name="agent_scratchpad")],
    },
    memory=memory #记忆组件
    )

这里的关键改变是:

  • agent_kwargs: 通过这个参数,我们可以自定义Agent的行为

  • extra_prompt_messages:我们添加了两个MessagesPlaceholder:

    • chat_history: 用于插入对话历史。
    • agent_scratchpad: 用于Agent的中间思考过程。

这样配置确保了Agent在每次决策时都能考虑到之前的对话内容。

6 验证优化后的提示词模板

最后,让我们检查一下优化后的提示词模板:

print(agent_chain.agent.prompt.messages)
print(agent_chain.agent.prompt.messages[0])
print(agent_chain.agent.prompt.messages[1])
print(agent_chain.agent.prompt.messages[2])

能看到新添加的chat_historyagent_scratchpad占位符。

7 总结

通过以上步骤,我们成功地为Langchain Agent添加了记忆功能。这使得Agent能够在多轮对话中保持上下文连贯性,大大提高了其在复杂任务中的表现。

添加记忆功能只是构建高效Agent的第一步。在实际应用中,你可能需要根据具体需求调整记忆组件的类型和参数,或者实现更复杂的记忆管理策略。

始终要注意平衡记忆的深度和Agent的响应速度。过多的历史信息可能会导致决策缓慢或偏离主题。因此,在生产环境中,你可能需要实现某种形式的记忆修剪或总结机制。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
人工智能 算法 搜索推荐
AI搜索时代:谁是你的“Geo老师”?2025年生成式引擎优化(GEO)实战专家盘点
本文介绍GEO(生成式引擎优化)时代三位代表性“Geo老师”:孟庆涛倡导思维革命,君哥践行AI全域增长,微笑老师提出“人性化GEO”理念。他们共同强调知识图谱与E-E-A-T核心,引领AI搜索下的内容变革。
104 0
AI搜索时代:谁是你的“Geo老师”?2025年生成式引擎优化(GEO)实战专家盘点
|
19天前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
240 115
|
18天前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
1639 39
|
16天前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
271 13
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
18天前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
215 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
17天前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
机器学习/深度学习 人工智能 自动驾驶
超维计算让AI有记忆和反应,还能解决自动驾驶难题
这可以打破我们与自动驾驶汽车和其他机器人之间的僵局,这也将促使更像人类AI模型的出现。
1367 0
|
15天前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
226 28
|
2月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
640 36
|
29天前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
304 21