Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Flask实现内部接口----pycharm安装及新建,location代表着文件路径,下面是Python的环境,Flask是由Python开发的框架,Python文件接口ython通过GET发送

Flask实现内部接口-pycharm安装及新建项目_哔哩哔哩_bilibili

使用Python Flask实现识别接口

第一步,先安装PyCharm

第二步,下载PyCharm

第三步,选择

第四步

第五步 打印一下Python文件,这里有一个main.py文件

def print_hi(name):
    print(f'Hi',{name})
 
if __name__ == '__main__':
    print_hi('PyCharm')

第六步 打开Pycharm,新建一个Python文件

第七步 叫lean_flask

import logging
from flask import Flask
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
 
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)

第八步 用小写字母,有多个字母用下划线之间隔开,

第九步 import logging,引入日志模块

第十步 设置打印日志的函数和基础格式

第十一步 可以设置时间,文件名称,日志等级,日志内容,时间

第十二步 各个含义

第十三步 指定打印文件和编码

第十四步 解决乱码问题,用handler

第十五步 使用 flask之前先声明

pip install flask==3.0.0

第十六步添加路由

第十七步,debug代表着重启服务器,port代表着8888

第十八步 服务器成功启动了

import logging
 
import requests
from flask import Flask
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
init_log()
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
@app.route("/learn/path/<string:name>")
def lean_path(name):
    return name
@app.route("/learn/m-get",methods=["GET"])
def learn_get_method():
    age = requests.args.get("age")
    name = requests.args.get("name")
    logging.info("learn m-get age 是: %s ,name是: %s",age,name)
    return "SUCCESS",200
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)
 

第十九步 利用POSTMAN可以对接口进行测试,打开他,点击send发送一下请求,可以检查接口:

第二十步 接口怎样写,可以看到HelloWorld了,已经返回成功了

第二十一步,默认是字符串类型

第二十二步,路径要以/开头

第二十四 这里先要用import 引入文件

第二十五 先用flask.request这个

第二十六步 通过args.get方法,我们可以获取到值

第二十七步给他写一个状态码

第二十八 调用函数

第二十九步 添加POSTMAN接口

第三十步,我们再调用另一个接口

第三十一步,这里我们发现已经调用成功了

第三十二步 日志的格式

第三十三步,通过POST方式来获取数据,通过JSON模块去实现一下

第三十四 通过JSON格式

第三十五

第三十六步 用loads方法,返回一下数据

第三十七步 发送一下请求

第三十八步 jsonify

第三十九步 up主写错了,这里要改成name

import json
import logging
 
import requests
from flask import Flask, request, jsonify
 
 
def init_log():
    # 设置打印到控制台的格式和等级
    logging.basicConfig(format='%(asctime)s %(filename)s %(levelname)s %(message)s', datefmt='%a %d %b %Y %H:%M:%S',
                        level=logging.INFO)
    # 设置输出到的文件和编码
    file_handler = logging.FileHandler("ocr.log", encoding="utf-8")
    # 设置输出等级
    file_handler.setLevel(logging.INFO)
    # 设置输出到文件的日志格式
    file_handler.setFormatter(logging.Formatter('%(asctime)s %(filename)s %(levelname)s %(message)s'))
    logger = logging.getLogger()
    logger.handlers.append(file_handler)
 
 
init_log()
 
app = Flask(__name__)
@app.route("/learn/hello")
def hello_world():
    return "Hello,world!"
@app.route("/learn/path/<string:name>")
def lean_path(name):
    return name
@app.route("/learn/m-get",methods=["GET"])
def learn_get_method():
    age = request.args.get("age")
    name = request.args.get("name")
    logging.info("learn m-get age 是: %s ,name是: %s",age,name)
    return "SUCCESS",200
@app.route("/learn/m-post",methods=["POST"])
def learn_post_method():
    data = request.data
    logging.info("learn post-m data : %s",data)
    data = json.loads(data)
    age = data["age"]
    name = data["name"]
    logging.info("learn post-m age:%s name:%s",age,name)
    return jsonify(data),200
if __name__ == '__main__':
    app.run(host='0.0.0.0',debug=True,port=8888)
 

第40步 最后得到数据


相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
6月前
|
SQL 数据库 开发者
Python中使用Flask-SQLAlchemy对数据库的增删改查简明示例
这样我们就对Flask-SQLAlchemy进行了一次简明扼要的旅程,阐述了如何定义模型,如何创建表,以及如何进行基本的数据库操作。希望你在阅读后能对Flask-SQLAlchemy有更深入的理解,这将为你在Python世界中从事数据库相关工作提供极大的便利。
593 77
|
10月前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
12月前
|
JSON 前端开发 API
使用Python和Flask构建简易Web API
使用Python和Flask构建简易Web API
648 86
|
10月前
|
IDE 测试技术 项目管理
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
3508 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
|
10月前
|
人工智能 编译器 Python
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
216 0
python已经安装有其他用途如何用hbuilerx配置环境-附带实例demo-python开发入门之hbuilderx编译器如何配置python环境—hbuilderx配置python环境优雅草央千澈
|
12月前
|
存储 API 数据库
使用Python和Flask构建简单的RESTful API
使用Python和Flask构建简单的RESTful API
257 2
|
12月前
|
JSON 关系型数据库 测试技术
使用Python和Flask构建RESTful API服务
使用Python和Flask构建RESTful API服务
520 2
|
12月前
|
JSON API 数据格式
使用Python和Flask构建简单的Web API
使用Python和Flask构建简单的Web API
|
12月前
|
开发框架 前端开发 JavaScript
利用Python和Flask构建轻量级Web应用的实战指南
利用Python和Flask构建轻量级Web应用的实战指南
671 2
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
642 2

推荐镜像

更多