语音识别01-----语音合成,分离,变声实战模块介绍

简介: 语音识别01-----语音合成,分离,变声实战模块介绍

本资料借鉴:仅用于学习和讨论,如有侵权请联系【语音识别实战】计算机博士带你一口气学完语音合成、分离、变声三大实战模块,简直不要太爽了!_AI/人工智能/计算机视觉/深度学习/机器学习_哔哩哔哩_bilibili

今天来讨论一下,语音识别现在有了一个声音数据,如何做一个识别那?

       语音识别到底要干什么,输入是我们的语音信号,一般语音就是一个.we文件,最终结果是翻译成最终我想要说的什么,有了语音之后,可以看WE文件

       先把数据进行一个编码,做一个特征,转化成一个向量就是一个解码的过程。

       我们一般有一个编码的,和一个解码的,你是想把语音转文字,把文字转语音都行

举个例子,在时间中你会越来越,少看见RNN结构,而是发现卷积结构,RNN结构的缺点是不能考虑到更远的结构,现在通常是卷积和RNN相搭配


相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
5月前
|
人工智能 自然语言处理 搜索推荐
Spark-TTS: AI语音合成的"变声大师"
Spark-TTS 是一款革命性的语音合成模型,被誉为“变声大师”。它通过创新的 BiCodec 技术将语音分解为语义和全局两种 Token,实现对音色、性别、语速等属性的精细控制。结合统一的 LLM 架构,Spark-TTS 简化了传统 TTS 的复杂流程,同时提供了前所未有的灵活性。此外,团队还发布了 VoxBox 开源数据集,为行业提供标准评估基准。尽管在零样本场景下仍存改进空间,但 Spark-TTS 已经开启了语音合成新时代,让个性化、可控的 AI 语音成为可能。
|
11月前
|
人工智能 自然语言处理 API
自学记录HarmonyOS Next的HMS AI API 13:语音合成与语音识别
在完成图像处理项目后,我计划研究HarmonyOS Next API 13中的AI语音技术,包括HMS AI Text-to-Speech和Speech Recognizer。这些API提供了强大的语音合成与识别功能,支持多语言、自定义语速和音调。通过这些API,我将开发一个支持语音输入与输出的“语音助手”原型应用,实现从语音指令解析到语音响应的完整流程。此项目不仅提高了应用的交互性,也为开发者提供了广阔的创新空间。未来,语音技术将在无障碍应用和智慧城市等领域展现巨大潜力。如果你也对语音技术感兴趣,不妨一起探索这个充满无限可能的领域。 (238字符)
477 11
|
JSON 自然语言处理 Java
Android App开发语音处理之系统自带的语音引擎、文字转语音、语音识别的讲解及实战(超详细 附源码)
Android App开发语音处理之系统自带的语音引擎、文字转语音、语音识别的讲解及实战(超详细 附源码)
2005 0
|
机器学习/深度学习 自然语言处理 大数据
语音识别和语音合成技术
语音识别和语音生成是人工智能的重要分支,旨在实现计算机对人类语音的理解和生成。随着深度学习技术的快速发展,语音识别和生成技术在近年来取得了显著进展,并在多个领域实现了广泛应用。本文将介绍语音识别和生成的基本原理、关键技术及其应用,并探讨其未来的发展趋势。
956 3
|
机器学习/深度学习 人工智能 算法
构建一个基于AI的语音识别系统:技术深度解析与实战指南
【5月更文挑战第28天】本文深入探讨了构建基于AI的语音识别系统,涵盖基本原理、关键技术及实战指南。关键步骤包括语音信号预处理、特征提取、声学模型、语言模型和解码器。深度学习在声学和语言模型中发挥关键作用,如RNN、LSTM和Transformer。实战部分涉及数据收集、预处理、模型训练、解码器实现及系统评估。通过本文,读者可了解构建语音识别系统的基本流程和技巧。
|
机器学习/深度学习 人工智能 自然语言处理
听懂未来:AI语音识别技术的进步与实战
听懂未来:AI语音识别技术的进步与实战
1374 0
|
API 语音技术 开发者
构建智能语音助手应用:语音识别和语音合成的实践
智能语音助手应用正在成为现代应用程序的热门趋势。语音识别技术使应用能够理解和解释用户的语音输入,而语音合成技术则将计算机生成的语音转化为可听的声音。本文将介绍构建智能语音助手应用的实践方法,并展示如何使用开源工具和API进行语音识别和语音合成。
783 0
|
API 语音技术 Python
python知识点100篇系列(12)-使用windows自带的模块实现语音识别
python知识点100篇系列(12)-使用windows自带的模块实现语音识别
242 0
|
自然语言处理 语音技术
STM32工程---非特定语音识别模块使用---语音播报+语音识别
STM32工程---非特定语音识别模块使用---语音播报+语音识别
406 0
|
API 语音技术
构建智能语音助手应用:语音识别和语音合成的实践
智能语音助手应用正变得越来越流行,它们能够通过语音与用户进行交互,为用户提供便捷的服务。在本文中,我们将介绍如何构建一个智能语音助手应用,包括语音识别和语音合成的实践。我们将使用现代化的语音处理技术和开源工具来实现这个应用。
697 0

热门文章

最新文章