深入解析Elasticsearch的内存架构与管理

本文涉及的产品
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: 深入解析Elasticsearch的内存架构与管理

一、Elasticsearch的内存架构概述

Elasticsearch的内存架构主要分为两大部分:堆内存(On-Heap)和堆外内存(Off-Heap)。这两部分内存各有其用途和管理策略,共同支撑着Elasticsearch的高性能和可扩展性。

二、堆内存(On-Heap)详解

堆内存是Elasticsearch JVM进程分配的内存空间,用于存储Java对象。

es使用Lucene作为其底层搜索引擎,但Lucene的某些数据结构并不直接存储在堆内存中,而是存储在堆外内存中。堆内存是垃圾回收(GC)的主要目标,GC会清除不再使用的对象以释放内存空间。

Elasticsearch在堆内存中维护了多个内存池,用于不同类型的数据结构。这些内存池包括索引缓冲区、节点查询缓存、分片请求缓存、字段数据缓存和段缓存等。每个内存池都有其特定的用途和管理策略。


例如,索引缓冲区用于新文档的写入缓冲,当缓冲满时,内容会被刷新到磁盘上的Lucene段中。而字段数据缓存则用于聚合和排序操作,当执行这些操作时,字段数据会被加载到堆内存中。Elasticsearch通过LRU(最近最少使用)算法和其他策略来管理这些内存池的使用,确保重要的操作能够得到足够的内存资源。

2.1 内存池

Elasticsearch在堆内存中维护了多个内存池,用于不同类型的数据结构。这些内存池包括:

  • Indexing Buffer:用于新文档的写入缓冲,当缓冲满时,内容会被刷新到磁盘上的Lucene段中。
  • Node Query Cache:节点级别的查询缓存,用于存储频繁查询的结果。
    Shard Request Cache:分片级别的请求缓存,用于缓存分片级别的搜索结果。
  • Field Data Cache:字段数据缓存,用于聚合和排序操作。当执行这些操作时,字段数据会被加载到堆内存中。
  • Segments Cache:Lucene段的缓存,用于存储已经加载到内存中的Lucene段信息。

2.2 内存管理

Elasticsearch通过LRU(最近最少使用)算法和其他策略来管理内存池的使用。当内存不足时,Elasticsearch会根据需要清除缓存中的数据,以确保重要的操作能够得到足够的内存资源。

三、堆外内存(Off-Heap)探秘

与堆内存不同,堆外内存不由JVM直接管理,而是由Lucene管理。Lucene使用堆外内存来存储其倒排索引和其他数据结构,这些数据结构对于搜索性能至关重要。将部分内存管理交给Lucene处理可以减少垃圾回收对搜索性能的影响,因为Lucene的数据结构通常不需要进行频繁的GC。


此外,堆外内存的使用还可以避免JVM的内存限制,使Elasticsearch能够处理更大的数据集。虽然堆外内存不由JVM直接管理,但Elasticsearch仍然提供了一些工具和设置来监控和调整堆外内存的使用。例如,可以通过配置文件设置Lucene的内存限制,以避免使用过多的系统资源。

四、优化Elasticsearch的内存使用

为了充分发挥Elasticsearch的性能,需要合理配置和优化其内存使用。以下是一些建议:

  1. 合理配置JVM堆大小:根据服务器的物理内存和Elasticsearch的工作负载来合理配置JVM堆的大小。过小的堆可能导致内存不足,而过大的堆可能会增加垃圾回收的开销。建议将JVM堆大小设置为服务器物理内存的一半左右,并留下足够的内存供操作系统和其他进程使用。
  2. 使用合适的缓存策略:根据实际需求调整Elasticsearch的缓存设置。对于频繁查询的数据,可以将其缓存在节点查询缓存或分片请求缓存中,以加快查询速度。对于不常查询的数据,可以将其从缓存中清除,以节省内存空间。
  3. 监控和调整:定期监控Elasticsearch的内存使用情况,并根据实际情况进行调整。可以使用Elasticsearch提供的监控工具或第三方监控解决方案来实现。通过监控,可以及时发现内存泄漏、内存溢出等问题,并采取相应的措施进行解决。

五、总结

Elasticsearch的内存架构是其高性能和可扩展性的重要基础。通过合理配置和优化内存使用,可以确保Elasticsearch在各种工作负载下都能提供稳定、高效的搜索和分析服务。对于Elasticsearch的用户和开发者来说,深入了解其内存架构和管理策略是释放其全部潜能的关键一步。希望本文的内容能为大家提供一些有益的参考和启示。


相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
1月前
|
Web App开发 缓存 监控
内存溢出与内存泄漏:解析与解决方案
本文深入解析内存溢出与内存泄漏的区别及成因,结合Java代码示例展示典型问题场景,剖析静态集合滥用、资源未释放等常见原因,并提供使用分析工具、优化内存配置、分批处理数据等实用解决方案,助力提升程序稳定性与性能。
529 1
|
19天前
|
弹性计算 定位技术 数据中心
阿里云服务器配置选择方法:付费类型、地域及CPU内存配置全解析
阿里云服务器怎么选?2025最新指南:就近选择地域,降低延迟;长期使用选包年包月,短期灵活选按量付费;企业选2核4G5M仅199元/年,个人选2核2G3M低至99元/年,高性价比爆款推荐,轻松上云。
94 11
|
2月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
204 2
|
3月前
|
弹性计算 前端开发 NoSQL
2025最新阿里云服务器配置选择攻略:CPU、内存、带宽与系统盘全解析
本文详解2025年阿里云服务器ECS配置选择策略,涵盖CPU、内存、带宽与系统盘推荐,助你根据业务需求精准选型,提升性能与性价比。
|
4月前
|
SQL 运维 数据挖掘
森马服饰从 Elasticsearch 到阿里云 SelectDB 的架构演进之路
森马引入阿里云 SelectDB 替换原 Elasticsearch + 业务库混合架构,统一分析 16+ 核心业务,打通 BI 组件,大幅简化数据同步链路和分析系统架构。实现复杂查询 QPS 提升 400%,响应时间缩短至秒级,亿级库存流水聚合查询缩短至 8 秒内的显著收益,有效驱动森马全渠道运营效率持续增长与业务创新。
126 0
森马服饰从 Elasticsearch 到阿里云 SelectDB 的架构演进之路
|
4月前
|
存储 弹性计算 固态存储
阿里云服务器配置费用整理,支持一万人CPU内存、公网带宽和存储IO性能全解析
要支撑1万人在线流量,需选择阿里云企业级ECS服务器,如通用型g系列、高主频型hf系列或通用算力型u1实例,配置如16核64G及以上,搭配高带宽与SSD/ESSD云盘,费用约数千元每月。
368 0
|
8月前
|
存储 JSON 数据格式
ElasticSearch基础概念解析
以上就是ElasticSearch的基础概念。理解了这些概念,你就可以更好地使用ElasticSearch,像使用超级放大镜一样,在数据海洋中找到你需要的珍珠。
234 71
|
5月前
|
存储 缓存 数据挖掘
阿里云服务器实例选购指南:经济型、通用算力型、计算型、通用型、内存型性能与适用场景解析
当我们在通过阿里云的活动页面挑选云服务器时,相同配置的云服务器通常会有多种不同的实例供我们选择,并且它们之间的价格差异较为明显。这是因为不同实例规格所采用的处理器存在差异,其底层架构也各不相同,比如常见的X86计算架构和Arm计算架构。正因如此,不同实例的云服务器在性能表现以及适用场景方面都各有特点。为了帮助大家在众多实例中做出更合适的选择,本文将针对阿里云服务器的经济型、通用算力型、计算型、通用型和内存型实例,介绍它们的性能特性以及对应的使用场景,以供大家参考和选择。
|
11月前
|
搜索推荐 API 定位技术
一文看懂Elasticsearch的技术架构:高效、精准的搜索神器
Elasticsearch 是一个基于 Lucene 的开源搜索引擎,以其强大的全文本搜索功能和快速的倒排索引技术著称。它不仅支持数字、文本、地理位置等多类型数据,还提供了可调相关度分数、高级查询 DSL 等功能。Elasticsearch 的核心技术流程包括数据导入、解析、索引化、查询处理、得分计算及结果返回,确保高效处理大规模数据并提供准确的搜索结果。通过 RESTful API、Logstash 和 Filebeat 等工具,Elasticsearch 可以从多种数据源中导入和解析数据,支持复杂的查询需求。
588 0

热门文章

最新文章

推荐镜像

更多
  • DNS