Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)

简介: Scala+Spark+Hadoop+IDEA实现WordCount单词计数,上传并执行任务(简单实例-下)

Scala+Spark+Hadoop+IDEA上传并执行任务

本文接续上一篇文章,已经在IDEA中执行Spark任务执行完毕,测试成功。

上文链接:Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例)

一、打包

1.1  将setMaster注释掉

package day05
 
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
 
import scala.collection.mutable
 
/**
  * 打包注意事项:1,将setMaster注释掉
  *             2,不需要打印
  */
object SparkWordCount {
 
  def main(args: Array[String]): Unit = {
    //配置信息类
    //1,setAppName(任务名称) setMaster(表示开启多少个线程运行)
    System.setProperty("hadoop.home.dir", "/usr/local/hadoop-2.7.5")
 
    val conf: SparkConf = new SparkConf().setAppName("SparkWordCount")//.setMaster("local[*]")
 
    //上下文对象
    val sc: SparkContext = new SparkContext(conf)
 
    //读取数据(数据通过数组 args进入)
    val lines: RDD[String] = sc.textFile(args(0))
 
    //处理数据
    val map01: RDD[(String, Int)] = lines.flatMap(_.split(" ")).map((_, 1))
    val wordCount: RDD[(String, Int)] = map01.reduceByKey(_ + _).sortBy(_._2, false)
 
    val wcToBuffer: mutable.Buffer[(String, Int)] = wordCount.collect().toBuffer
//    println(wcToBuffer)
    sc.stop()
  }
}

1.2 打开 clear 并打包

(1)工具栏-->view-->Tool Buttons(右侧出现 Maven Project)

(2)双击clean

(3)双击package

打包结果:(出现target、连个jar包)

注意:如果出现ClassNotFound 并且出现了只有一个Jar包的话,就将其他的没有用的类删掉,只留下当前类。

1.3 拷贝生成的Jar包

二、上传

2.1 将Jar包拷贝到指定目录下(我这儿将scala02-1.0-SNAPSHOT.jar改名为 swc.jar)

/root/swc.jar

2.2 在spark中运行

./bin/spark-submit --class day05.SparkWordCount --master spark://centos01:7077 --executor-memory 1g --total-executor-cores 2 /root/swc.jar hdfs://centos01:9000/ws hdfs://centos01:9000/outp

–class设定的是程序的入口点,也就是我们的驱动类,这点和Hadoop MapReduce 程序很相似。

–master是我们设置的master URL,这里官方有详细的参数列表:

  • local:在本地的单线程运行
  • local[k]:在本地多线程运行,运行线程数为K
  • local[*]:在本地多线程运行,尽可能多的线程数量
  • spark://HOST:PORT :连接上spark单点模式运行,端口PORT是提前配置好的,默认端口7077
  • mesos://HOST:PORT :连接上mesos(好像是一种集群支持工具,没有深入研究)
  • yarn :基于Hadoop的yarn运行,集群的位置在 HADOOP_CONF_DIR ,YARN_CONF_DIR这两个变量指定的位置

2.3 从Web ui查看信息是否上传成功。

(1)查看spark任务

(2)查看hdfs 文件上传

(3)通过命令来查看内容。

[root@centos01 spark-1.6.3-bin-hadoop2.6]# hdfs dfs -cat /outp/part-00000
(hello,12)
(java,9)
[root@centos01 spark-1.6.3-bin-hadoop2.6]# hdfs dfs -cat /outp/part-00001
(scala,7)
(new,7)
(work,7)
(python,5)
[root@centos01 spark-1.6.3-bin-hadoop2.6]# hdfs dfs -cat /outp/part-00002
(javaScript,4)
(jvm,4)
(world,3)
[root@centos01 spark-1.6.3-bin-hadoop2.6]# 

完美呈现~~

目录
相关文章
|
分布式计算 大数据 Java
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
227 1
大数据-86 Spark 集群 WordCount 用 Scala & Java 调用Spark 编译并打包上传运行 梦开始的地方
|
DataWorks 关系型数据库 MySQL
DataWorks产品使用合集之Aataworks运行scala实例,如何配置参数
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
129 0
|
分布式计算 Hadoop Scala
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
Scala +Spark+Hadoop+Zookeeper+IDEA实现WordCount单词计数(简单实例-上)
160 0
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
258 0
|
8月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
344 79
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
788 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
220 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
212 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
265 0
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
514 6

相关实验场景

更多