大数据平台治理资源成本化

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据平台治理资源成本化

前言

”三分靠技术,七分靠管理“这句话可能大家都听说过,事实上背后是涉及到了一系列的方法论,可能业界听过什么程序猿到了一定年龄就转管理岗这个其实是事实。放到大数据平台治理上,这个完全适用的。我们做一个平台化的治理,需要的衡量清楚局部和整体的关系,做到优化的整体化,而不是追求局部优化。所以不管在任何时候,我们都需要看到我们全局的状况,找出资源大头,再精准打击,首要条件的事情便是资源成本化。

大数据平台资源成本衡量

成本的消耗其实来源很多,涉及到网络带宽,交换机,路由器等器材,机柜租用,以及本身的CPU价格,内存价格都有。但是我们需要怎么去衡量我们的平台成本呢,实际情况是,我们不需要真正把实际确定花费多少钱算得那么精准,而是给平台上面可用于优化和治理的信息进行量化就可以,对于一个大数据平台而言,主要针对两个资源就可以,那就是存储和计算。得到一个资源模型,再按照总的成本去进行分摊即可。

存储成本计算

成本=(存储r1+计算r2)

r1和r2是用来分摊时候的资源系数,也就是可以拿到比例值即可

存储成本

存储成本比较直接,物理表对应的存储即可,比如一个TB=100块钱,那么1GB就是10块钱。需要注意的点有下问题:

1.hdfs上面的存储会出现类似多副本*10或者3的存储,也会出现eccode编码之后的1.5倍的存储,那么这种时候怎么去计算呢?

2.视图是不占用存储的,这种时候是不是存储是0呢?

3.我的是外部表这种时候如果很多表都怪在同一个目录下面,那么这种时候共享一份存储,那么这个时候怎么计算呢?

4.我的表cache到了ssd上面,也是占用存储,那么这两个介质上面的是不是都算呢?

仔细一想,就发现计算存储这个事情好像也没那么直接,所以这个时候我们要明白这个时候本身的目标是什么,我们的目标其实是期望反应到资产成本的存储积数,本身的一生就是我们其实期望未来用户是可以下线掉资产的,在一套干净,整齐的资产范围之外,我不希望乱七八糟的资产也进来,所以这种时候我们其实会需要把这种不占用存储的资产也计算成本,未来可以看到的是哪怕下线一个无用的视图,那么也是可以看到成本在下降。面对一系列的问题,我的回答是 一份存储即可,不管是多副本还是单副本,我们都期望是资产占用的成本是相同的单位存储价格 去治理的,所以即使你有10个副本,我依然按照一份存储单位进行计算。

计算成本

计算成本其实在我们实践中被挑战过很多,因为涉及到引擎的不一样,所以资源计算有点不一样,在Yarn的计算体系下,CPU和内存的消耗其实就是核心关注的事情,另一个角度来说,不管是Hive、Spark、Flink等部署在Yarn上,对应资源分配来说,我们都是可以统一到对内存的分配上来,所以核心的考量是关注以上两者的消耗情况。对于资源来说,我们直接是采用资源占用多久来进行衡量,所以是 资源消耗= Core*时间,换算之后我们叫做CU,我们根据CU进行定价。

Hive成本的计算

Hive的任务其实最后的转换成了mapreduce的模型,我们分析一下资源模型:

根据资源消耗分析,我们按照如下公式进行换算

作业消耗
cpu消耗=map个数x时间+reduce个数x时间 ,
内存消耗=mapreduce.map.memory.mbxtask个数+
mapreduce.reduce.memory.mbxreduce个数
Master需要占用一份,则+1即可

yarn中的内存配置如下

mapreduce.map.memory.mb=256m
mapreduce.reduce.memory.mb=256m

当然实际情况会被任务内部配置做调整改变,但是总体是这个逻辑,每个任务配置从log中进行提取,我们就得到了hive的资源模型

Spark作业成本计算

Spark计算本身也是按照内存和CPU的消耗计算, Spark的作业模型我们分解如下

,Spark资源成本计算模型如下:

作业消耗
cpu消耗=task个数*时间,
内存消耗=Worker个数xexecutor-memory
Master需要占用一份,则+1即可

但是,有些问题!!!

最开始的话确实是这样去做的,在Hive的任务比较多的时候问题不大,但是随着平台做优化升级,整个平台逐步把任务切换到Spark引擎下,这个时候资源计算发生改变。

首先一点,hive作业对内存消耗其实不大,平台默认也就1g,后面资源升级,调整成了2g,资源消耗也还好,作业对资源的控制还是维系在一个正比关系。但是加了Spark之后,由于内存是executor-memory参数控制的,这个到了Spark默认配置一度上调6g->8g,有的干到了20g,25g,因为内存和成本就是一个系数,所以原有的成本体系一度崩塌了。

基于这种情况,考虑到实际的成本和引擎不一样,所以并没有去统一去进行对待。而是按照实际的消耗去评估作业的切换方式。

写在后面的话

实际情况来说,对于Yarn来说,本身的Vcore占用的时间和Memory消耗是准确些的,但是实际没有落地这样去实施,原因是平台间隔离比较大,yarn中打印的日志量缺少关联信息,所以其实是一个开发工作量,并没有直接使用。

另外,资源成本换算的成本目标是业务口径,用于知道使用团队的资源使用情况,进行换算是可以满足实际场景的。

最后一点,实际作业成本还有一些资源消耗比较难输出资源情况,例如adhoc的查询,spark sts作业,presto 等,还有一些因素是调度成本和数据扫描成本,综合的下来业务方本身不感知,而且会导致用户使用被很大程度限制!综合考量才是符合实际要求的解法。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
5月前
|
资源调度 安全 Java
Java 大数据在智能教育在线实验室设备管理与实验资源优化配置中的应用实践
本文探讨Java大数据技术在智能教育在线实验室设备管理与资源优化中的应用。通过统一接入异构设备、构建四层实时处理管道及安全防护双体系,显著提升设备利用率与实验效率。某“双一流”高校实践显示,设备利用率从41%升至89%,等待时间缩短78%。该方案降低管理成本,为教育数字化转型提供技术支持。
131 1
|
4月前
|
机器学习/深度学习 Java 大数据
Java 大视界 -- Java 大数据在智能政务公共资源交易数据分析与监管中的应用(202)
本篇文章深入探讨了 Java 大数据在智能政务公共资源交易监管中的创新应用。通过构建高效的数据采集、智能分析与可视化决策系统,Java 大数据技术成功破解了传统监管中的数据孤岛、效率低下和监管滞后等难题,为公共资源交易打造了“智慧卫士”,助力政务监管迈向智能化、精准化新时代。
|
4月前
|
存储 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市交通拥堵溯源与治理策略展示中的应用(191)
本项目探索了基于Java的大数据可视化技术在城市交通拥堵溯源与治理策略中的应用。通过整合多源交通数据,利用Java生态中的大数据处理与可视化工具,构建了交通拥堵分析模型,并实现了拥堵成因的直观展示与治理效果的可视化评估。该方案为城市交通管理提供了科学、高效的决策支持,助力智慧城市建设。
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
361 1
|
存储 大数据 测试技术
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
在大数据环境中,数据存储格式直接影响查询性能和成本。本文探讨了 Parquet、Avro 和 ORC 三种格式在 Google Cloud Platform (GCP) 上的表现。Parquet 和 ORC 作为列式存储格式,在压缩和读取效率方面表现优异,尤其适合分析工作负载;Avro 则适用于需要快速写入和架构演化的场景。通过对不同查询类型(如 SELECT、过滤、聚合和联接)的基准测试,本文提供了在各种使用案例中选择最优存储格式的建议。研究结果显示,Parquet 和 ORC 在读取密集型任务中更高效,而 Avro 更适合写入密集型任务。正确选择存储格式有助于显著降低成本并提升查询性能。
1367 1
用于大数据分析的数据存储格式:Parquet、Avro 和 ORC 的性能和成本影响
|
9月前
|
人工智能 DataWorks 大数据
大数据AI一体化开发再加速:DataWorks 支持GPU类型资源
大数据开发治理平台 DataWorks 的Serverless资源组支持GPU资源类型,以免运维、按需付费、弹性伸缩的Serverless架构,将大数据处理与AI开发能力无缝融合。面向大数据&AI协同开发场景,DataWorks提供了交互式开发和分析工具Notebook。开发者在创建个人开发环境时,可以选择GPU类型的资源作为Notebook运行环境,以支持进行高性能的计算工作。本教程将基于开源多模态大模型Qwen2-VL-2B-Instruct,介绍如何使用 DataWorks Notebook及LLaMA Factory训练框架完成文旅领域大模型的构建。
589 24
|
10月前
|
数据采集 机器学习/深度学习 DataWorks
DataWorks产品评测:大数据开发治理的深度体验
DataWorks产品评测:大数据开发治理的深度体验
423 1
|
11月前
|
机器学习/深度学习 存储 数据采集
解锁DataWorks:一站式大数据治理神器
解锁DataWorks:一站式大数据治理神器
252 1
|
12月前
|
存储 算法 固态存储
大数据分区优化存储成本
大数据分区优化存储成本
294 4
|
12月前
|
存储 大数据 Serverless
大数据增加分区优化资源使用
大数据增加分区优化资源使用
204 1