性能工具之 Kafka 快速 BenchMark 测试示例

简介: 【5月更文挑战第24天】性能工具之 Kafka 快速 BenchMark 测试示例

一、什么是 Kafka?

消息队列(Message Queue)简称 MQ,是一种跨进程的通信机制,通常用于应用程序间进行数据的异步传输,MQ 产品在架构中通常也被叫作“消息中间件”。它的最主要职责就是保证服务间进行可靠的数据传输,同时实现服务间的解耦。

在架构领域,很多厂商都开发了自己的 MQ 产品,最具代表性的开源产品有:

  • Kafka
  • ActiveMQ
  • ZeroMQ
  • RabbitMQ
  • RocketMQ

每一种产品都有自己不同的设计与实现原理,但根本的目标都是相同的:为进程间通信提供可靠的异步传输机制。Kafka 是最受欢迎的开源消息中间件之一,在全球范围内被广泛应用。

一个消息队列 Kafka 集群包括 Producer、Kafka Broker、Consumer Group、Zookeeper。

image.png

(图片来自于网络)

二、 Benchmark 测试工具

本文主要介绍如何利用 Kafka 自带的性能测试脚本测试Kafka的性能,以及如何使用 Kafdrop 监控 Kafka 的工作状态,最后给出了Kafka的Benchmark测试数据。

在 Kafka 安装目录 $KAFKA_HOME/bin/ 有以下跟性能相关的测试脚本:

#生产者和消费者的性能测试工具
kafka-producer-perf-test.sh
kafka-consumer-perf-test.sh

#用来测试生产者和消费者功能的,现使用率很低。
kafka-verifiable-consumer.sh
kafka-verifiable-producer.sh

# Kafka 的测试框架,用于执行各种基准测试和负载测试。一般的 Kafka 用户应该用不到这个脚本。
trogdor.sh
windows

本次我们测试主要使用以下两个脚本:
1、kafka-producer-perf-test.sh:用于测试Kafka Producer的性能,主要输出4项指标,总共发送消息量(以MB为单位),每秒发送消息量(MB/second),发送消息总数,每秒发送消息数(records/second)。

主要参数如下:

[root@data-server bin]# ./kafka-producer-perf-test.sh 
usage: producer-performance [-h] --topic TOPIC --num-records NUM-RECORDS [--payload-delimiter PAYLOAD-DELIMITER] --throughput THROUGHPUT
                            [--producer-props PROP-NAME=PROP-VALUE [PROP-NAME=PROP-VALUE ...]] [--producer.config CONFIG-FILE] [--print-metrics]
                            [--transactional-id TRANSACTIONAL-ID] [--transaction-duration-ms TRANSACTION-DURATION] (--record-size RECORD-SIZE |
                            --payload-file PAYLOAD-FILE)

This tool is used to verify the producer performance.

optional arguments:
  -h, --help             show this help message and exit
  --topic TOPIC          produce messages to this topic
  --num-records NUM-RECORDS
                         number of messages to produce
  --payload-delimiter PAYLOAD-DELIMITER
                         provides delimiter to be used when --payload-file is provided. Defaults  to  new  line. Note that this parameter will be ignored if --
                         payload-file is not provided. (default: \n)
  --throughput THROUGHPUT
                         throttle maximum message throughput to *approximately* THROUGHPUT messages/sec. Set this to -1 to disable throttling.
  --producer-props PROP-NAME=PROP-VALUE [PROP-NAME=PROP-VALUE ...]
                         kafka producer related configuration properties like bootstrap.servers,client.id etc.  These configs take precedence over those passed
                         via --producer.config.
  --producer.config CONFIG-FILE
                         producer config properties file.
  --print-metrics        print out metrics at the end of the test. (default: false)
  --transactional-id TRANSACTIONAL-ID
                         The transactionalId to use if  transaction-duration-ms  is  >  0.  Useful  when  testing  the  performance of concurrent transactions.
                         (default: performance-producer-default-transactional-id)
  --transaction-duration-ms TRANSACTION-DURATION
                         The max age of each transaction. The commitTransaction will be  called  after  this time has elapsed. Transactions are only enabled if
                         this value is positive. (default: 0)

  either --record-size or --payload-file must be specified but not both.

  --record-size RECORD-SIZE
                         message size in bytes. Note that you must provide exactly one of --record-size or --payload-file.
  --payload-file PAYLOAD-FILE
                         file to read the message payloads from. This works only  for  UTF-8  encoded  text  files.  Payloads will be read from this file and a
                         payload will be randomly selected when sending messages. Note that you must provide exactly one of --record-size or --payload-file.

2、kafka-consumer-perf-test.sh:用于测试Kafka Consumer的性能,测试指标与Producer性能测试脚本一样

主要参数如下:

[root@data-server bin]# ./kafka-consumer-perf-test.sh
Missing required option(s) [bootstrap-server]
Option                                   Description                            
------                                   -----------                            
--bootstrap-server <String: server to    REQUIRED unless --broker-list          
  connect to>                              (deprecated) is specified. The server
                                           (s) to connect to.                   
--broker-list <String: broker-list>      DEPRECATED, use --bootstrap-server     
                                           instead; ignored if --bootstrap-     
                                           server is specified. The broker list 
                                           string in the form HOST1:PORT1,HOST2:
                                           PORT2.                               
--consumer.config <String: config file>  Consumer config properties file.       
--date-format <String: date format>      The date format to use for formatting  
                                           the time field. See java.text.       
                                           SimpleDateFormat for options.        
                                           (default: yyyy-MM-dd HH:mm:ss:SSS)   
--fetch-size <Integer: size>             The amount of data to fetch in a       
                                           single request. (default: 1048576)   
--from-latest                            If the consumer does not already have  
                                           an established offset to consume     
                                           from, start with the latest message  
                                           present in the log rather than the   
                                           earliest message.                    
--group <String: gid>                    The group id to consume on. (default:  
                                           perf-consumer-20126)                 
--help                                   Print usage information.               
--hide-header                            If set, skips printing the header for  
                                           the stats                            
--messages <Long: count>                 REQUIRED: The number of messages to    
                                           send or consume                      
--num-fetch-threads <Integer: count>     DEPRECATED AND IGNORED: Number of      
                                           fetcher threads. (default: 1)        
--print-metrics                          Print out the metrics.                 
--reporting-interval <Long:              Interval in milliseconds at which to   
  interval_ms>                             print progress info. (default: 5000) 
--show-detailed-stats                    If set, stats are reported for each    
                                           reporting interval as configured by  
                                           reporting-interval                   
--socket-buffer-size <Integer: size>     The size of the tcp RECV size.         
                                           (default: 2097152)                   
--threads <Integer: count>               DEPRECATED AND IGNORED: Number of      
                                           processing threads. (default: 10)    
--timeout [Long: milliseconds]           The maximum allowed time in            
                                           milliseconds between returned        
                                           records. (default: 10000)            
--topic <String: topic>                  REQUIRED: The topic to consume from.   
--version                                Display Kafka version.

三、 Benchmark 测试场景

测试环境说明:

  • 前置条件:1个Broker(节点),1个Topic(主题),3个Partition(分区),无Replication(副本),异步模式,消息Payload为300字节,消息数量5000万(Kafka设置保持与生产环境一致)
  • 被测版本:bitnami/kafka:2.8.1 被测服务器:通用计算型 | 8vCPUs | 16GiB | s3.2xlarge.2 | 通用型SSD | 300 GiB IOPS上限5,400,IOPS突发上限8,000 ,最大吞吐量 250 MB/s
  • 测试客户端:通用计算型 | 8vCPUs | 16GiB | s3.2xlarge.2 | 通用型SSD | 500 GiB IOPS上限7,800,IOPS突发上限8,000,最大吞吐量 250 MB/s
  • 测试工具:Kafka自带的基准工具

image.png
(简要测试拓扑)

1、生产者基准测试

测试项目:Kafka Producer 性能基准测试
测试目标:测试设置测试参数:acks=1,消息Payload为300字节,消息数量5000万时Producer时的吞吐量

./kafka-producer-perf-test.sh --topic zuozewei --num-records 50000000 --throughput -1 --record-size 300 --producer-props bootstrap.servers=192.168.1.213:9092 acks=1

相关参数解释如下:

--topic 指定topic
--num-records    指定生产数据量
--throughput    指定吞吐量(-1表示无限制)
--record-size   record数据大小
--producer-props key=value    指定producer服务地址配置,该命令允许你在后面指定要设置的生产者参数,比如压缩算法、延时时间等。
--acks  指定发送出去的消息的持久化机制

补充下 acks 的几种参数的解释:

  • acks=0:不管写入broker的消息到底成功与否,发送一条消息出去,立马就可以发送下一条消息,吞吐量最高的方式,会发生消息丢失;
  • acks=all/acks=-1:leader写入成功以后,必须等待其他ISR中的副本都写入成功,才可以返回响应说这条消息写入成功了,此时会收到一个回调通知;
  • acks=1:只要leader写入成功,就认为消息成功了,默认值,会发生消息丢失。

测试结果如下:

[root@data-server bin]# ./kafka-producer-perf-test.sh --topic zuozewei --num-records 50000000 --throughput -1 --record-size 300 --producer-props bootstrap.servers=192.168.1.213:9092 acks=1
1823612 records sent, 364722.4 records/sec (104.35 MB/sec), 2.0 ms avg latency, 412.0 ms max latency.
2289024 records sent, 457804.8 records/sec (130.98 MB/sec), 1.4 ms avg latency, 52.0 ms max latency.
2300541 records sent, 460108.2 records/sec (131.64 MB/sec), 1.2 ms avg latency, 30.0 ms max latency.
2306616 records sent, 461323.2 records/sec (131.99 MB/sec), 1.1 ms avg latency, 18.0 ms max latency.
2242778 records sent, 448555.6 records/sec (128.33 MB/sec), 1.1 ms avg latency, 16.0 ms max latency.
2140578 records sent, 428115.6 records/sec (122.48 MB/sec), 1.2 ms avg latency, 19.0 ms max latency.
2222668 records sent, 444533.6 records/sec (127.18 MB/sec), 1.2 ms avg latency, 28.0 ms max latency.
2205768 records sent, 441153.6 records/sec (126.22 MB/sec), 1.2 ms avg latency, 18.0 ms max latency.
2181274 records sent, 436254.8 records/sec (124.81 MB/sec), 1.4 ms avg latency, 52.0 ms max latency.
2094473 records sent, 418894.6 records/sec (119.85 MB/sec), 1.4 ms avg latency, 17.0 ms max latency.
2024219 records sent, 404843.8 records/sec (115.83 MB/sec), 1.4 ms avg latency, 14.0 ms max latency.
2000186 records sent, 400037.2 records/sec (114.45 MB/sec), 1.7 ms avg latency, 29.0 ms max latency.
1913048 records sent, 382609.6 records/sec (109.47 MB/sec), 2.4 ms avg latency, 71.0 ms max latency.
2125272 records sent, 425054.4 records/sec (121.61 MB/sec), 1.4 ms avg latency, 19.0 ms max latency.
2191209 records sent, 438241.8 records/sec (125.38 MB/sec), 1.2 ms avg latency, 15.0 ms max latency.
2243998 records sent, 448799.6 records/sec (128.40 MB/sec), 1.2 ms avg latency, 22.0 ms max latency.
2165062 records sent, 433012.4 records/sec (123.89 MB/sec), 1.1 ms avg latency, 17.0 ms max latency.
2059370 records sent, 411874.0 records/sec (117.84 MB/sec), 1.2 ms avg latency, 18.0 ms max latency.
2182918 records sent, 436583.6 records/sec (124.91 MB/sec), 1.3 ms avg latency, 26.0 ms max latency.
2169204 records sent, 433840.8 records/sec (124.12 MB/sec), 1.4 ms avg latency, 26.0 ms max latency.
2100874 records sent, 420174.8 records/sec (120.21 MB/sec), 1.2 ms avg latency, 12.0 ms max latency.
2056641 records sent, 411328.2 records/sec (117.68 MB/sec), 1.5 ms avg latency, 21.0 ms max latency.
2059852 records sent, 411970.4 records/sec (117.87 MB/sec), 1.6 ms avg latency, 26.0 ms max latency.
50000000 records sent, 426686.692495 records/sec (122.08 MB/sec), 1.37 ms avg latency, 412.00 ms max latency, 1 ms 50th, 2 ms 95th, 9 ms 99th, 24 ms 99.9th.
[root@data-server bin]#

测试结果会打印出测试生产者的吞吐量 (MB/s)、消息发送延时以及各种分位数下的延时。一般情况下,消息延时不是一个简单的数字,而是一组分布,而我们应该关心延时的概率分布情况,仅仅知道一个平均值是没有意义的,这里我们关注到99th 分位就可以了。比如在上面的输出中,99th 值是 9 ms,这表明测试生产者生产的消息中,有 99% 消息的延时都在 9 ms 以内。我们完全可以把这个数据当作这个生产者对外承诺的 SLA。

简要解析以上结果:数据:5000万,平均吞吐量(TPS):约 42 万条/秒,99.9th(百分位)延时:9 毫秒,平均速率:122 MB/s

Kafdrop 服务端监控截图:
image.png

我们可以看到5000万条数据全部被 Broker 接收。

消息服务器资源监控截图:
image.png

我们可以一个 Broker 的 CPU 使用量约为 44 %,内存使用率为 90%,磁盘写入速率为149 MB/s。

2、消费者基准测试

测试命令如下:

./kafka-consumer-perf-test.sh --topic zuozewei --threads 1 --messages 50000000  --broker-list 192.168.1.213:9092

相关参数解释如下:

--topic 指定topic
--threads 指定线程数
--messages 指定消费数据条数
--broker-list kafka broker列表地址
[root@data-server bin]# ./kafka-consumer-perf-test.sh --topic zuozewei --threads 1 --messages 50000000  --broker-list 192.168.1.213:9092
WARNING: option [threads] and [num-fetch-threads] have been deprecated and will be ignored by the test
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec, rebalance.time.ms, fetch.time.ms, fetch.MB.sec, fetch.nMsg.sec
2024-04-18 16:17:58:373, 2024-04-18 16:19:03:556, 14305.1147, 219.4608, 50000000, 767071.1689, 452, 64731, 220.9933, 772427.4304

消费者测试结果输出格式与生产者有所差别,但该脚本也会打印出消费者的吞吐量数据。比如本例中的 1723MB/s。有点令人遗憾的是,它没有计算不同分位数下的分布情况。

把以上结果整理成表格如下:
image.png

简要解析以上结果:数据:5000万,平均吞吐量(TPS):约 77 万条/秒,平均速率:221 MB/s

Kafdrop 服务端监控截图:
image.png

毫无疑问,kafka消费者进度监控的最重要的监控指标为消费者 lag,即所谓滞后程度,就是指消费者当前落后于生产者的程度,比方说,Kafka 生产者向某主题成功生产了 100 万条消息,你的消费者当前消费了 80 万条消息,那么我们就说你的消费者滞后了 20 万条消息,即 Lag 等于 20 万。

目前我们看到 lag 该列所有值都是 0,因为这表明我们的消费者完全没有任何滞后

消息服务器资源监控截图:
image.png

我们可以一个 Broker 的 CPU 使用量约为 33 %,内存使用率为 90%,磁盘写入速率为160 MB/s。

四、小结

好了,今天我们一起梳理了 kafka 2.8.1 版本自带的 BenchMark 测试脚本,我们熟悉了常见的性能测试的工具行命令。希望这些命令在工作做 Kafka 集群BenchMark测试有所帮助。

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 测试技术
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
EdgeMark是一个面向嵌入式AI的自动化部署与基准测试系统,支持TensorFlow Lite Micro、Edge Impulse等主流工具,通过模块化架构实现模型生成、优化、转换与部署全流程自动化,并提供跨平台性能对比,助力开发者在资源受限设备上高效选择与部署AI模型。
287 9
EdgeMark:嵌入式人工智能工具的自动化与基准测试系统——论文阅读
|
2月前
|
Java 测试技术 API
自动化测试工具集成及实践
自动化测试用例的覆盖度及关键点最佳实践、自动化测试工具、集成方法、自动化脚本编写等(兼容多语言(Java、Python、Go、C++、C#等)、多框架(Spring、React、Vue等))
118 6
|
3月前
|
前端开发 Java jenkins
Jmeter压力测试工具全面教程和使用技巧。
JMeter是一个能够模拟高并发请求以检查应用程序各方面性能的工具,包括但不限于前端页面、后端服务及数据库系统。熟练使用JMeter不仅能够帮助发现性能瓶颈,还能在软件开发早期就预测系统在面对真实用户压力时的表现,确保软件质量和用户体验。在上述介绍的基础上,建议读者结合官方文档和社区最佳实践,持续深入学习和应用。
726 10
|
2月前
|
测试技术 UED 开发者
性能测试报告-用于项目的性能验证、性能调优、发现性能缺陷等应用场景
性能测试报告用于评估系统性能、稳定性和安全性,涵盖测试环境、方法、指标分析及缺陷优化建议,是保障软件质量与用户体验的关键文档。
|
3月前
|
监控 Java 数据挖掘
利用Jmeter工具进行HTTP接口的性能测试操作
基础上述步骤反复迭代调整直至满足预期目标达成满意水平结束本轮压力评估周期进入常态监控阶段持续关注系统运转状态及时发现处理新出现问题保障服务稳定高效运作
451 0
|
4月前
|
敏捷开发 运维 数据可视化
DevOps看板工具中的协作功能:如何打破开发、测试与运维之间的沟通壁垒
在DevOps实践中,看板工具通过可视化任务管理和自动化流程,提升开发与运维团队的协作效率。它支持敏捷开发、持续交付,助力团队高效应对需求变化,实现跨职能协作与流程优化。
|
4月前
|
人工智能 数据可视化 测试技术
UAT测试排程工具深度解析:让验收测试不再失控,项目稳稳上线
在系统交付节奏加快的背景下,“测试节奏混乱”已成为项目延期的主因之一。UAT测试排程工具应运而生,帮助团队结构化拆解任务、清晰分配责任、实时掌控进度,打通需求、测试、开发三方协作闭环,提升测试效率与质量。本文还盘点了2025年热门UAT工具,助力团队选型落地,告别靠表格和群聊推进测试的低效方式,实现有节奏、有章法的测试管理。
|
10月前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
447 1
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
300 1